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Preface

This book is written for graduate students and engineers interested in machines
and drives analysis. Chapter 1 covers some basic concepts that are common to
books in this area. This fourth edition differs from previous editions in several
ways. For example, the transformation for both the q and d variables is obtained
from the expression of the rotating magnetomotive force or mmf. This is a very
straightforward approach that provides an analytic origin of the transformation.
Also, the analysis of each machine is focused on motor action to set the stage
for electric drives, although generator action is considered in the case of the
synchronous machine. Also, since for analysis purposes the stators of the AC
machines considered in this text are the same, the stators are considered once
in Chapter 2 rather than repeating the analysis for each machine. However, the
rotors are different and are treated separately for each machine. This reduces the
work considerably.

The induction machine is considered in Chapter 3. Most induction motors have
squirrel-cage rotors. However, if the stator has sinusoidally distributed windings,
the rotor may also be considered as having sinusoidally distributed windings even
though the rotor may consist of solid bars. The transformation of the rotor vari-
ables to the g and d axes differs only in that the rotor windings are rotating relative
to the stator. The permanent-magnet AC machine and the synchronous generator
are considered in Chapters 4 and 5, respectively. In Chapter 4, we treat the brush-
less DC machine with L = L. Three different values of angle between V', and E,,
or ¢,, are considered. These are: ¢, = 0, which is the most common operating
mode, ¢, = ¢, 7y OF maximum torque per volt, and ¢, = ¢, /4 Or maximum
torque per ampere. In this case, the permanent-magnet rotor is considered to be
magnetized sinusoidally.

The first part of Chapter 5 is devoted to motor action of a synchronous machine.
The second part is devoted to generator action with positive current assumed out
of the machine. This latter mode of operation was treated by Park in his classic
paper written in 1929. The basic analysis of AC machines covered in this text ends

xiii
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Preface

with Chapter 5. Power systems engineers could continue with Chapters 6, 7,
and 8. The drives engineer would not cover these chapters, but would skip to
Chapters 10 through 14, and would likely omit some of the material in Chapter 5.

In Chapter 6, the concept of neglecting stator transients is treated. This chapter
would be of most interest to the power systems engineer since it deals with the
basis of transient stability programs used in stability studies for power systems.
Both power systems and drives engineers could find Chapter 9 interesting. Drives
engineers would want to study Chapter 10, as it describes the most commonly used
modulation strategies. Chapter 11 deals with DC drives. This chapter is brief but
relevant to electric drive engineering.

In Chapter 12, the torque control of permanent-magnet AC and synchronous
reluctance machines are considered. The analysis of the permanent-magnet
machine is similar to the material in Chapter 4. The difference is that L, #L,
and a reluctance torque exists. The parameters of the machine considered
are representative of electric drive motors used in hybrid and electric vehicles.
The synchronous reluctance machine is considered with the permanent magnets
removed, whereby only a reluctance torque exists. Synchronous reluctance
machines are also considered as viable candidates as electric drive motors in
hybrid and electric vehicles. It is shown that with power-electronic-based current
control, the electric transients are so fast that they may be neglected when
considering the mechanical dynamics.

Induction motor control is considered in Chapter 13, including the volt-per-
hertz, constant-slip, and field-oriented control methods. Each is considered in
substantial detail. Finally, the control of permanent-magnet AC machines is
considered in Chapter 14.

Although this is a graduate text, the first six or seven chapters could be used at
the senior-level with the remaining chapters used as a graduate text.

February 2025 Paul C. Krause
Oleg Wasynczuk
Scott D. Sudhoff
Steven D. Pekarek
West Lafayette, Indiana
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1

Introductory Concepts

1.1 Introduction

This chapter is a review for most since the material is covered in undergraduate
courses in the analysis of electromechanical devices [1]. The material is presented
to start everyone with the same background. The chapter begins with coupled
circuits (transformers) where the phasor equivalent circuit is established. Since
phasors are not always taught the same, they are covered briefly in Appendix B
to make sure everyone understands the concept of phasors as used in this text.
Although we will give several approaches for the calculation of torque of electric
machines; Section 1.1-3 sets forth a method of calculating force and torque that is
generally taught at the undergraduate level.

Some instructors may choose to skip some material and/or select topics that
were not covered in undergraduate courses at their school. As mentioned, the
material will be a review for most and can be covered rather fast. On the other
hand, Chapter 2 dives into machine analysis that contains new material and can
be taught at a much slower pace.

1.2 Stationary Magnetically Coupled Circuits

Magnetically coupled electric circuits are central to the operation of transform-
ers and electromechanical motion devices. In the case of transformers, stationary
circuits are magnetically coupled for the purpose of changing the ac voltage and
current levels. The two windings shown in Fig. 1.2-1 consist of turns N; and N,
and they are wound on a common core, which is a ferromagnetic material with
a permeability large relative to that of air. The magnetic core is illustrated in two
dimensions.

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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1 Introductory Concepts
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Figure 1.2-1 Magnetically coupled circuits.

The flux produced by each winding can be separated into two components:
a leakage component denoted by the subscript [ and a magnetizing component
denoted by the subscript m. Each of these components is depicted by a single
streamline with the positive direction determined by applying the right-hand rule
to the directions of current flow in the winding. The leakage flux associated with
a given winding links only that winding, whereas the magnetizing flux, whether
it is due to current in winding 1 or winding 2, links both windings.

The flux linking of each winding may be expressed as

D, =D, +D,, +D,, (1.2-1)

D, =D, +D,,+D,, (1.2-2)

The leakage flux @, is produced by current flowing in winding 1, and it links only
the turns of winding 1. Likewise, the leakage flux @,, is produced by current flow-
ing in winding 2, and it links only the turns of winding 2. The flux @, is produced
by current flowing in winding 1, and it links all turns of windings 1 and 2. Simi-
larly, the magnetizing flux @,,, is produced by current flowing in winding 2, and
it also links all turns of windings 1 and 2. Both @,,, and @,,, are called magnetiz-
ing fluxes. With the selected positive directions of current flow and the manner in
which the windings are wound, the magnetizing flux produced by positive current
flowing in one winding can add to or subtract from the magnetizing flux produced
by positive current flowing in the other winding. Thus, the mutual inductance can
be positive or negative. In Fig. 1.2-1, it is positive.

It is appropriate to point out that this is an idealization of the actual magnetic
system. It seems logical that all of the leakage flux will not link all the turns of
the winding producing it; hence, @, and ®,, are “equivalent” leakage fluxes.



1.2 Stationary Magnetically Coupled Circuits

Similarly, all of the magnetizing fluxes of one winding may not link all of the
turns of the other winding.
The voltage equations may be expressed as

di

vy =rip + d_tl (1.2-3)
da

v, =1l + d_t2 (1.2-4)

In matrix form,

% r Of |i d |4
[Vj B [(; rz] [zj T [Aj (1.2-5)

The resistances r; and r, and the flux linkages 4, and 4, are related to wind-
ings 1 and 2, respectively. Since it is assumed that @, links the equivalent turns
of winding 1 (N,) and @, links the equivalent turns of winding 2 (N,), the flux
linkages may be written as

A =N,®, (1.2-6)

4, =N,®, (1.27)

where @, and @, are given by (1.2-1) and (1.2-2), respectively.

If we assume that the magnetic system is magnetically linear (i.e., core losses
and saturation are neglected), we may apply Ohm’s law for magnetic circuits to
express the fluxes. Thus, the fluxes may be written as

Nkik
@y = Lk (1.2-8)
2le
Nkik
D, = —K (1.2-9)
m mm

where k = 1 or 2 and R, and R, are the reluctances of the leakage paths, and
R, is the reluctance of the path of magnetizing fluxes. Typically, the reluctances
associated with leakage paths are much larger than the reluctance of the magne-
tizing path. The reluctance associated with an individual leakage path is difficult
to determine exactly, and it is usually approximated from test data or by using the
computer to solve the field equations numerically. On the other hand, the reluc-
tance of the magnetizing path of the core shown in Fig. 1.2-1 may be computed
with sufficient accuracy.
For the iron

L

= ! (1.2-10)
HrMoA;

where [; is the length of the path in iron, u, is the relative permeability of iron,

H, is the permeability of free space, and A; is the cross-sectional area of the flux

i
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4| 1 Introductory Concepts

in the iron. In electromechanical devices, we will find that the magnetizing flux
must transverse air gaps and

R, =R, + R, (1.2-11)

Substituting (1.2-8) and (1.2-9) into (1.2-1) and (1.2-2) yields
_ Ny Ny + Nyi,

b, = 1.2-12
! mll ERm ERm ( )
N2i2 N2i2 Nlil
b, = ——+ ==+ — 1.2-13
2 2RIZ 2Rm ERm ( )
Substituting (1.2-12) and (1.2-13) into (1.2-6) and (1.2-7) yields
y! Nf'+N12‘+N1N2‘ (1.2-14)
= —i + =i i 2-
1 mll 1 mm 1 mm 2
N? N2 N,N
A= i 2+ =i (1.2-15)

=i, 4+ =i, +—=i
R,’ R®,2 R,

m m

When the magnetic system is linear, the flux linkages are generally expressed
in terms of inductances and currents. We see that the coefficients of the first two
terms on the right-hand side of (1.2-14) depend on N, and the reluctance of the
magnetic system, independent of the existence of winding 2. An analogous state-
ment may be made regarding (1.2-15) with the roles of winding 1 and winding 2
reversed. Hence, the self-inductances are defined as

2 2
L, = ﬂ + ﬂ =L,+L, (1.2-16)
ERll mm
2 2
L, = & + & =L,+L,, (1.2-17)
9{IZ ERm "

where L; and L, are the leakage inductancesand L,,; and L,, are the magnetizing
inductances of windings 1 and 2, respectively. From (1.2-16) and (1.2-17), it follows
that the magnetizing inductances may be related as

L L

m2 ml
_mz _ Tml (1.2-18)
2 2
Ny N
whichis 1/R,,.

The mutual inductances are defined as the coefficient of the third term on the
right-hand side of (1.2-14) and (1.2-15). In particular,

N,N
L, = % (1.2-19)

m

NZNI
L, = 1.2-20
21 m ( )

m



1.2 Stationary Magnetically Coupled Circuits

We see that L,, = L,; and, with the assumed positive direction of current flow
and the manner in which the windings are wound as shown in Fig. 1.2-1, the
mutual inductances are positive. If, however, the assumed positive directions of
the current or the direction of the windings were such that @,,; opposed @,,,,
then the mutual inductances would be negative.

The mutual inductances may be related to the magnetizing inductances. Com-
paring (1.2-16) and (1.2-17) with (1.2-19) and (1.2-20), we see that

N, N,
le = ]Vlel == IVZLMZ (12'21)
The flux linkages may now be written as
Ay =Lyl + Lysi, (1.2-22)
Ay = Lyyiy + Lyi, (1.2-23)

where L,; and L,, are defined by (1.2-16) and (1.2-17), respectively, and L,, and L,
by (1.2-19) and (1.2-20), respectively. The self-inductances L,; and L,, are always
positive; however, the mutual inductances L,,(L,;) may be positive or negative, as
previously mentioned.

Although the voltage equations given by (1.2-3) and (1.2-4) may be used for pur-
poses of analysis, it is customary to perform a change of variables that yields the
well-known equivalent T circuit of two windings coupled by a linear magnetic
circuit. To set the stage for this derivation, let us express the flux linkages from
(1.2-22) and (1.2-23) as

; . Ny
Ay =Lpiy + L, | i+ N G (1.2-24)
1

. Ny .o
/12 = lelz + Lm2 ]Vll + 1 (12-25)
2

With 4, in terms of L, ; and 4, in terms of L, ,, we see two logical candidates for
substitute variables, in particular, (N,/N, )i, or (N;/N,)i,. If we let

g Ny,

i = 17112 (1.2-26)
then we are using the substitute variable i;, which, when flowing through wind-
ing 1, produces the same mmf as the actual i, flowing through winding 2; N, {, =
N,i,. This is said to be referring the current in winding 2 to winding 1 or to a
winding with N, turns, whereupon winding 1 becomes the reference or primary
winding and winding 2 is the secondary winding and 7, is negative. On the other
hand, if we let

., Ny,
i) = ]7211 (1.2-27)

5



6| 1 Introductory Concepts

then i} is the substitute variable that produces the same mmf when flowing
through winding 2 as i; does when flowing in winding 1; N,i} = N,i,. This change
of variables is said to refer to the current of winding 1 to winding 2 or to a winding
with N, turns, whereupon winding 2 becomes the reference or primary winding
and winding 1 the secondary with .

We will demonstrate the derivation of the equivalent T circuit by referring the
current of winding 2 to a winding with N, turns; thus, i is expressed by (1.2-26).
We want the instantaneous power to be unchanged by this substitution of vari-
ables. Therefore,

vyl =v,i, (1.2-28)
Hence,
Ny
v, = 1721)2 (1.2-29)

Flux linkages, which have the units of V-s, are related to the substitute flux
linkages in the same way as voltages. In particular,

A= %/12 (1.2-30)
2
Now, replace (N,/N,)i, with #, in the expression for 4,, given by (1.2-24). Next,
solve (1.2-26) for i, and substitute it into 4, given by (1.2-25). Now, multiply this
result by N, /N, to obtain 4} and then substitute (N,/N,)*L,,, for L, in 4. If we
do all this, we will obtain

Ay =Lyiy + Ly, (i, + 1) (1.2-31)
Ay=Ly i+ L, (i, + 1) (1.2-32)

where

N\ 2
1

Ly, = <172> Ly, (1.2-33)
The flux linkage equations given by (1.2-31) and (1.2-32) may also be written as
Ay =Lyl + L,y (1.2-34)
Ay = Ly + Lhyi) (1.2-35)

where

’ Nl : !

L, = N Ly=L,+L,, (1.2-36)

and L,, is defined by (1.2-17).
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Figure 1.2-2 Equivalent T - Ly L r
circuit with winding 1 \Q/ \Q_/ /\/
selected as reference winding. /\/ +
— -—

1] %)
Vi L V2

If we multiply (1.2-4) by N, /N, to obtain v/, the voltage equations become

vl _ rl 0 il i A’l -
lv;] - lO r;] Lzl T LVZ] (1.2-37)

where

/ Ny ?
n=(=1|n (1.2-38)

The previous voltage equations, (1.2-37), together with the flux linkage
equations, (1.2-34) and (1.2-35), suggest the equivalent T circuit shown in
Fig. 1.2-2. This method may be extended to include any number of windings
wound on the same core.

Example 1A The equivalent T circuit.
It is instructive to illustrate the method of deriving an equivalent T circuit from
open- and short-circuit measurements. When winding 2 of the two-winding trans-
former shown in Fig. 1.2-2 is open circuited and a 60 Hz voltage of 110V (rms) is
applied to winding 1, the average power supplied to winding 1 is 6.66 W. The mea-
sured current in winding 1 is 1.05 A (rms). Next, with winding 2 short-circuited,
the current flowing in winding 1 is 2 A (rms) when the applied voltage is 30V at
60 Hz. The average input power is 44 W. If we assume L;; = L;z, an approximate
equivalent T circuit can be determined from these measurements with winding 1
selected as the reference winding.

with V, = |V,| /6,,(0) and T, = |1,| /6,;(0) then the average power supplied to
winding 1 may be expressed as

P, = |V |T,| cos ¢, (1A-1)
where
(l)pf = 091)(0) - gel(o) (1A—2)

Here, V, and I, are phasors with the positive direction of I; taken in the direction
of the voltage drop, and 6,,(0) and 6,,(0) are the phase angles of V; and I,
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respectively. Phasors are covered in Appendix B. Solving for ¢, during the
open-circuit test, we have
o b _1_ 6.66

=cos! —=2__ =86.7° (1A-3)

¢ =COS —— =
Bf VAN (110)(1.05)

Although ¢, = —86.7" is also a legitimate solution of (1A-3), the positive value is
taken since V, leads I, in an inductive circuit. With winding 2 open-circuited, the
input impedance of winding 1 is

1

Z= =r +jX; +X,1) (1A-4)

HNzl <t

With ¥, as the reference phasor, V; = 110/0°, I, = 1.05/ — 86.7°. Thus,

110/0°
rn+jX,+X,,)=—=6+j1046Q 1A-5
1 Hi&y m1) 1.05/ — 86.7° J ( )
If we neglect core losses, then, from (1A-5), r; = 6 Q. We also see from (1A-5) that
Xy + X, = 104.6 Q. For the short-circuit test, we will assume that I, = —T, since
transformers are designed so that at rated frequency X,,, >> |r}, +jX] |. Hence,
using (1A-1) again,

1 44 1.8°

GO ~ (14-6)

bpr =

In this case, the input impedance is Z = (r, +r}) +j (X;; + X],). This may be
determined as

30/0°
Z=—"1
2/ —428°

=11+j102 Q (1A-7)

Hence, r, =11—-r, =5Q and, since it is assumed that X;; =X}, both are
10.2/2 = 5.1 Q. Therefore, X,,; = 104.6—5.1 = 99.5 Q. In summary, r; = 6 Q,
L, =13.5mH,L,,; =263.9 mH,r, = 5Q, L], = 13.5 mH. Make sure we converted

from X’s to L’s correctly.

1.2.1 Nonlinear Magnetic System

Although the analysis of transformers and electric machines is often performed
assuming a magnetically linear system, economics and physics dictate that in the
practical design of many of these devices, some saturation occurs and that heating
of the magnetic material exists due to hysteresis loss [2]. The magnetization char-
acteristics of transformer or machine materials are typically given in the form of
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Figure 1.2-3 Typical B-H curve for silicon steel used in transformers.

the magnitude of flux density versus magnitude of field strength (B-H curve) as
shown in Fig. 1.2-3.

Ifitisassumed that the magnetic flux is uniform through most of the core, then B
is proportional to @ and H is proportional to magnetomotive force (mmf). Hence,
a plot of flux versus current is of the same shape as the B-H curve. A transformer
is generally designed so that some saturation occurs during normal operation.
During transients, saturation may occur resulting in large currents during startup
transients. Electric machines are also designed similarly in that a machine gener-
ally operates slightly in the saturated region during normal, rated operating condi-
tions. Since saturation causes coefficients of the differential equations describing
the behavior of an electromagnetic device to be functions of the coil currents, tran-
sient analysis is difficult without the aid of a computer. Our purpose here is not to
set forth methods of analyzing nonlinear magnetic systems. A method of incorpo-
rating the effects of saturation into a computer representation is of interest.

Formulating the voltage equations of stationary coupled windings appropriate
for computer simulation is straightforward and yet this technique is fundamental

9



10| 1 Introductory Concepts

to the computer simulation of ac machines. Therefore, it is to our advantage to
consider this method here. For this purpose, let us first write (1.2-31) and (1.2-32)

as
Ay =Ly, + 4, (1.2-39)
Ay =L+ A, (1.2-40)
where
A =Ly (i + 1) (1.2-41)

Solving (1.2-39) and (1.2-40) for the currents yields
1

iy = (A = 4p) (1.2-42)
11

A ) (1.2-43)
LlZ

If (1.2-42) and (1.2-43) are substituted into (1.2-37), and if we solve the resulting
equations for flux linkages, the following equations are obtained:

r
A = / v+ (A, — A dt (1.2-44)
Ly
/
1 _ / }’2 ’ d
b= v+ (A —25)| dt (1.2-45)
12
Substituting (1.2-42) and (1.2-43) into (1.2-41) yields
)
1= it S (1.2-46)
" ‘ (Lll L;z
where
-1
1 1 1
[P SRS S (1.2-47)
¢ (Lml Lll L;z )

We now have the equations expressed with 4, and A} as state variables. In the
computer simulation, (1.2-44) and (1.2-45) are used to solve for 4, and 4} and
(1.2-46) is used to solve for 4,,. The currents can then be obtained from (1.2-42)
and (1.2-43).

If the magnetization characteristics (magnetization curve) of the coupled
winding are known, the effects of saturation of the mutual flux path may
be incorporated into the computer simulation. Generally, the magnetization
curve can be adequately determined from a test wherein one of the windings
is open-circuited (winding 2, for example) and the input impedance of the
other winding (winding 1) is determined from measurements as the applied
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flia+12)

Lml (ll + lﬁ)

Figure 1.2-4 Magnetization curve.

voltage is increased in magnitude from zero to say 150% of the rated value. With
information obtained from this type of test, we can plot 4, versus (i, + i) as
shown in Fig. 1.2-4 wherein the slope of the linear portion of the curve is L ;.
From Fig. 1.2-4, it is clear that in the region of saturation we have

A =Ly (i, +15) = f(A,) (1.2-48)

where f(4,,) may be determined from the magnetization curve for each value
of 4,,. In particular, f(4,,) is a function of 4,, given by (1.2-48) and shown in
Fig. 1.2-5. Therefore, the effects of saturation of the mutual flux path may be
taken into account by replacing (1.2-41) with (1.2-48) for 4,,,. Substituting (1.2-42)
and (1.2-43) for i; and i’z, respectively, into (1.2-48) yields the following equation

11
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£ Figure 1.2-5 f(4,)
versus A, from
Figure 1.2-4.

_' - 1] 4
2 -_—
V) ——————» 4 P
L, L,
a= b =
Ly Ly
oote 41 o)
Ly Ly
1
e ==
Lp
Ué—» + ﬁé

Figure 1.2-6 Time-domain block diagram of a two-winding transformer with saturation.

for 4,

’11 /l; La
Ap=L,| —+— - A 1.2-49
=L, ( Lt ) o (12-49)

Hence, the computer simulation for including saturation involves replacing 4,,
given by (1.2-46) with (1.2-49) where f(4,,) is a generated function of 4,, deter-
mined from the plot shown in Fig. 1.2-5. The time-domain block diagram of a
two-winding transformer with saturation is shown in Fig. 1.2-6.
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1.3 Energy Balance Relationships

Electromechanical systems consist of an electric system, a mechanical system, and
a means whereby the electric and mechanical systems can interact. Interactions
can take place through any and all electromagnetic and electrostatic fields that are
common to both systems, and energy is transferred from one system to the other
as a result of this interaction [3]. We will focus on the electromagnetic system, and
the electrostatic system is treated in [2]. An electromechanical system with one
electric subsystem, one mechanical subsystem, and one coupling field is depicted
in Fig. 1.3-1. Electromagnetic radiation is neglected, and it is assumed that the
electric system operates at a frequency sufficiently low so that the electric system
may be considered a lumped-parameter system.

Heat loss will occur in the mechanical system due to friction, and the electric
system will dissipate heat due to the resistance of the current-carrying conductors.
Eddy current and hysteresis losses occur in the ferromagnetic materials. If W, is
the total energy supplied by the electric source and W), the total energy supplied
by the mechanical source, then the energy distribution could be expressed as

W =W, + W, + W (1.3-1)

Wy =W, + W, + W, (1.3-2)

In (1.3-1), W is the energy stored in the magnetic fields, which are not cou-
pled with the mechanical system. The energy W, is the heat loss associated with
the electric system excluding the coupling field losses. This loss occurs due to the
resistance of the current-carrying conductors as well as the energy dissipated in the
form of heat owing to hysteresis and eddy current losses external to the coupling
field. W, is the energy transferred to the coupling field by the electric system. The
energies common to the mechanical system may be defined in a similar manner.
In (1.3-2), W s is the energy stored in the moving member and compliances of the
mechanical system, W, is the energy loss in the mechanical system in the form
of heat, and W, is the energy transferred to the coupling field. It is important to
note that, with the convention adopted, the energy transferred to the coupling field
by either source is considered positive. Also, W (W,,) is negative when energy is
supplied to the electric source (mechanical source).

Electric P | Coupling |_ _| Mechanical
system field system

Figure 1.3-1 Block diagram of an elementary electromechanical system.

13
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VVmS

WeS Wf
|€Electric system %’&Coupling field %’eMechanical system%|

Figure 1.3-2 Energy balance.

If W, is defined as the total energy transferred to the coupling field, then
W =W+ W, (1.3-3)

where W/ is energy stored in the coupling field and Wy, is the energy dissipated in
the form of heat due to losses within the coupling field (eddy current or hysteresis
losses). In order to comply with convention, we will use W, to denote the energy
stored in the coupling field rather than W . The electromechanical system must
obey the law of conservation of energy, thus,

Wi+ Wy =Wp =Wy = W)+ Wy =W, — W) (1.3-4)
which may be written as
W+ Wy =W, + W, (1.3-5)

This energy balance is shown schematically in Fig. 1.3-2.

The actual process of converting electric energy into mechanical energy (or vice
versa) is independent of (1) the loss of energy in either the electric or the mechan-
ical systems (W,;, and W), (2) the energies stored in the electric or magnetic
fields that are not common to both systems (W), or (3) the energies stored in the
mechanical system (W,). If the losses of the coupling field are neglected, then
the field is conservative and (1.3-5) becomes

W, =W, +W, (1.3-6)

An example of an elementary electromechanical system is shown in Fig. 1.3-3.
It has a magnetic coupling field with the space between the movable and station-
ary members exaggerated for clarity. The voltage of the electric source is denoted
v, and f is an externally applied mechanical force. The electromagnetic force is
denoted f,. The resistance of the current-carrying conductor is denoted by r, with
I denoting the inductance of a linear (conservative) electromagnetic system that
does not couple with the mechanical system. In the mechanical system, M is the
mass of the movable member, and the linear compliance and damper are repre-
sented by a spring constant K and a damping coefficient D. The displacement x,,
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Figure 1.3-3 Electromechanical system with magnetic field.

is the zero force or equilibrium position of the mechanical system, which is the
steady-state position of the mass with f, and f equal to zero.

The voltage equation that describes the electric systems shown in Fig. 1.3-3 may
be written as

v=ri+ l% +ef (1.3-7)

where e; is the voltage drop due to the coupling field. The dynamic behavior of the
translational mechanical systems may be expressed by employing Newton'’s law of
motion. Thus,

d?x dx
f=ME +DE +K(x—x0) —f;? (13'8)
Since power is the time rate of energy transfer, the total energy supplied by the

electric source is

W, = / vidt (1.3-9)
The total energy supplied by the mechanical source is
Wy, = /fdx (1.3-10)
which may also be expressed as
W, = / f‘;—’t‘dt (1.3-11)

Substituting (1.3-7) into (1.3-9) yields

WE:r/izdt+l/iZ—idt+/efidt (1.3-12)

15
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The first term on the right-hand side of (1.3-12) represents the energy loss due
to the resistance of the conductors (W,; ). The second term represents the energy
stored in the linear electromagnetic field external to the coupling field (W,).
Therefore, the total energy transferred to the coupling field from the electric
system is

W, = / eidt (1.3-13)

Similarly, for the mechanical system

B d?x dx\’
WM_M/de+D/(E> dt+K/(x—x0)dx—/fedx (1.3-14)

Here, the first and third terms on the right-hand side of (1.3-14) represent the
kinetic energy stored in the mass and the potential energy stored in the spring,
respectively. The sum of these two stored energies is W,;. You should take a
moment to look at the first term on the right-hand side of (1.3-14) and recognize
that it can be written as %M(dx/dt)z. The second term is the heat loss due to
friction (W, ). Thus, the total energy transferred to the coupling field from the
mechanical system is

W, = —/fedx (1.3-15)

It is important to note from Fig. 1.3-3 that a positive force f, is assumed to be in
the same direction as a positive displacement dx. Substituting (1.3-13) and (1.3-15)
into the energy balance relation, (1.3-6), yields

sz/efidt—/fedx (1.3-16)

The equations set forth may be readily extended to include an electromechanical
system with any number of electric and mechanical inputs. Whereupon the field
may be expressed as

J K
Wi= Y W+ Wy (1.3-17)
j=1 k=1

wherein J electric and K mechanical inputs exist. The total energy supplied to the
coupling field from the electric inputs is

J J
ZWBj: / Zeﬁijdt (1.3-18)
j=1 j=1

The total energy supplied to the coupling field from the mechanical inputs is

K K
D Wy == / D fud (13-19)
k=1 k=1
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In our analysis of electromechanical systems, we will consider devices with only
one mechanical input, for example, the shaft of the electric machine or the mov-
ing arm of a magnetic solenoid. On the other hand, since machines may have
more than one electric terminal, it is necessary to consider systems with multiple
electric inputs. In all cases, however, the multiple electric inputs have a common
coupling field. Therefore, we need not become too ambitious in the following
derivations. More specifically, hereafter we will restrict our analysis to electrome-
chanical devices with only one mechanical input. Thus, the k subscript will be
dropped from f,, x, and W,,,. This reduces our work considerably without restrict-
ing the practical application of our results. With one mechanical input, the energy
balance equation becomes

J
sz/Zeﬁijdt—/fedx (1.3-20)
Jj=1

In differential form, which will be the form we will use extensively,

J
dw; = Zeﬁijdt —fdx (1.3-21)

=

Example 1B Calculation of inductance.

We will consider the electromechanical system shown in Fig. 1B-1. The system
is at x, when v and f are both zero. The value of x, is 3 mm, which is very much
exaggerated in Fig. 1B-1. The distance from c to d is 20cm and 10 cm from a to b.
The cross-sectional area of the iron and air gap is 4; = A, = 0.01 m?. The relative
permeability of the iron is 4000, and the permeability of air is 4z X 1077 H - m.

[ r
A
—> <\> —>f
1@ TR n R
P _>fe
— _<\>
,I_

|

X0

Figure 1B-1 Electromechanical system.
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In Section 1.6, we let
L =- (1B-1)

Determine N (turns) for k = 6.283x 107> H-m.
The reluctance to the magnetizing flux with x = x,,

R, =W 4R, =
TR Ay HeAy
60 x 1072 2 X 3%x1073
= +
4%x10°3x47rx1077 x1%x1073 47 x 1077 x 1073
=1.19 x 10° + 47.8 x 10° (1B-2)

Clearly, the reluctance is dominated by the reluctance of the two air gaps.
Now, if we neglect the reluctance of the iron, then

N2p,A
g
Ly =— (1B-3)
Comparing (1B-1) and (1B-3) we see that
1
k= 5NzyoAg (1B-4)
Solving for N yields
No 2 ) ( 2 x 6.283 x 1075 >2
HoA, 4z X 10771 x 1072
=100 turns (1B-5)

1.4 Energy in Coupling Field

Before using (1.3-21) to obtain an expression for the electromagnetic force f,, it
is necessary to derive an expression for the energy stored in the coupling field.
Once we have an expression for Wf, we can take the total derivative to obtain de,
which can then be substituted into (1.3-21). When expressing the energy in the
coupling field, it is convenient to neglect all losses associated with the magnetic
coupling field, whereupon the field is assumed to be conservative and the energy
stored therein is a function of the state of the electrical and mechanical variables.
Although the effects of the core losses of the coupling field may be functionally
accounted for by appropriately introducing resistance in the electric circuit, this
refinement is generally not necessary since the ferromagnetic material is selected
and arranged in laminations so as to minimize the hysteresis and eddy current
losses. Moreover, most of the energy stored in the coupling field is stored in the
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air gap of the electromechanical device. Since air is a conservative medium, all of
the energy stored therein can be returned to the electric or mechanical systems.
Therefore, the assumption of a lossless coupling field is not as restrictive as it might
first appear.

The energy stored in a conservative field is a function of the state of the sys-
tem variables and not the manner in which the variables reached that state. It
is convenient to take advantage of this feature when developing a mathematical
expression for the field energy. In particular, it is convenient to fix mathematically
the position of the mechanical system associated with the coupling field and then
excite the electric system with the displacement of the mechanical system held
fixed. During the excitation of the electric inputs, dx = 0, hence, W,, is zero even
though electromagnetic forces may occur. Therefore, with the displacement held
fixed, the energy stored in the coupling field during the excitation of the electric
inputs is equal to the energy supplied to the coupling field by the electric inputs.
Thus, with dx = 0, the energy supplied from the electric system may be expressed
from (1.3-20) as

J
W, = / Y i dt withdx =0 (1.4-1)
j=1

Let us consider a singly excited electromagnetic system similar to that shown in
Fig. 1.3-3. In this case, e = dA/dt, whereupon (1.4-1) becomes

W, = / idA with dx =0 (14-2)

Here, j = 1; however, the subscript is omitted for the sake of brevity. The area to
the left of the Ai relationship, shown in Fig. 1.4-1 for a singly excited electromag-
netic system, is the area described by (1.4-2). In Fig. 1.4-1, this area represents the
energy stored in the field at the instant when A = A, and i = i,. The Ai relationship
need not be linear; it need only be single-valued, a property that is characteristic of
a conservative or lossless field. Moreover, since the coupling field is conservative,
the energy stored in the field with A = 4, and i = i, is independent of the excursion
of the electrical and mechanical variables before reaching this state.

The area to the right of the Ai curve is called the coenergy and can be expressed
as

W, = / Adi withdx=0 (1.4-3)

Although the coenergy has little or no physical significance, we will find it a con-
venient quantity for expressing the electromagnetic force. From Fig. 1.4-1, we see
that the sum of W and W is A times i, that is,

A=W, + W, (1.4-4)

19
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7
2w,
0 | %/zi i

di

Figure 1.4-1 Stored energy and coenergy in a magnetic field of a singly excited
electromagnetic device.

which is also valid for multiple electric inputs, where Ai in (1.4-4) is replaced by
Zle Aji;. It should be clear that, for a linear magnetic system where the 4i plots
are straight-line relationships, Wf =W,= %Ai.

The displacement x defines completely the influence of the mechanical system
upon the coupling field; however, since A and i are related, only one is needed
in addition to x in order to describe the state of the electromechanical system.
Therefore, we can select either 4 and x as independent variables or i and x. If i and
x are selected as the independent variables, it is convenient to express the field
energy and the flux linkages as

W, = Wi, x) (1.4-5)

A= A0, x) (1.4-6)
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With i and x as independent variables, we must express d4 in terms of di before
substituting into (1.4-2). Thus, from 1.4-6,
_ 6/1(1., X) di+ 0A(i, x) dx

di ox

In the derivation of an expression for the energy stored in the field, dx is set equal
to zero. Hence, in the evaluation of field energy where dx = 0, d4 is equal to the
first term on the right-hand side of (1.4-7). Substituting into (1.4-2) yields

W (i,x) = / ia/lg’x) di

dAi (1.4-7)

= / g“fé’x) dé with dx = 0 (1.4-8)
0

where ¢ is a substitute variable of integration. Evaluation of (1.4-8) gives the energy
stored in the field of the singly excited system. The coenergy in terms of i and x may
be evaluated from (1.4-3) as

Wc(i,x)=//1(i,x)di

= / i A&, x)dé (1.4-9)
0
With 4 and x as independent variables
Wy = Wi(4,x) (1.4-10)
i=1i(A,x) (1.4-11)

The field energy may be evaluated from (1.4-2) as

Wf(/l,x)=/i(/1,x)d/l

A
= / i(&,x)dé (1.4-12)
0

To evaluate the coenergy with A and x as independent variables, we need to
express di in terms of dA. Thus, from (1.4-11),

di = 0i(4,x) di+ al(/l,x)dx
0 0x
Since dx = 0 in this evaluation, (1.4-13) becomes

[, 0i(A,%)
W,(4,%) = / b= =di

(1.4-13)

A .
=/ é‘al(jéx)dfwitth=0 (1.4-14)
0
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For a linear electromagnetic system, the Ai plots are straight-line relationships.
Thus, for the singly excited magnetically linear system,

A(i,x) = L(x)i (1.4-15)
or
i(A,x) = A (1.4-16)
L(x) '

where L(x) is the inductance. Let us evaluate W(i, x). With dx = 0 and, since
‘”(“‘) = L(x), (1.4-7) becomes

di=L(x)di (1.4-17)
Hence, from (1.4-8),

W(i,x) = / EL(x)dE = %L(x)iz (1.4-18)
0

It is left to the reader to show that by a similar procedure Wf(/l, x), W.(i, x), and
W.(4, x) are equivalent to (1.4-18) for this magnetically linear system.

The field energy is a state function and the expression describing the field energy
in terms of system variables is valid regardless of the variations in the system vari-
ables. For example, (1.4-18) expresses the field energy regardless of the variations
in L(x) and i. The fixing of the mechanical system so as to obtain an expression
for the field energy is a mathematical convenience and not a restriction upon the
result.

In the case of a multi-excited electromagnetic system, an expression for the field
energy may be obtained by evaluating the following relation with dx = 0:

/sz/l with dx = 0 (1.4-19)

Since the coupling field is considered conservative, (1.4-19) may be evaluated
independent of the order in which the flux linkages or currents are brought to
their final values. To illustrate the evaluation of (1.4-19) for a multi-excited sys-
tem, we will allow the currents to establish their final states one at a time while
all other currents are mathematically fixed in their either unexcited or final states.
This procedure may be illustrated by considering a doubly excited electric system
with one mechanical input. An electromechanical system of this type could be con-
structed by placing a second winding, supplied from a second electric system, on
either the stationary or movable member of the system shown in Fig. 1.3-3. In this
evaluation, it is convenient to use currents and displacement as the independent
variables. Hence, for a doubly excited electric system,

Wf(il,iz,x):/[ildlll(il,iz,x)+i2d/12 (iy,iy,x)] withdx=0  (1.4-20)
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In this determination of an expression for W/, the mechanical displacement is
held constant (dx = 0); thus, (1.4-20) becomes

04, (i, 15X 04, (i, 150X
Wf(il,iz,x)=/i1[ il L2 )di1+ 1(1, 2 )diz]

o0i; 0i,
Ay (iy, 1y, x 0Ay(iy, 1y, x .
+i2[ 2l )di1+ 2k )diz] with dx = 0
i oi,

(1.4-21)

We will evaluate the energy stored in the field by employing (1.4-21) twice. First,
we will mathematically increase the current i; from zero to its desired final value
while holding i, at zero. Thus, i, is the variable of integration and di, = 0. Energy is
supplied to the coupling field from the source connected to winding 1. As the sec-
ond evaluation of (1.4-21), i, is increased from zero to its desired final value while
maintaining i, at the value attained in the preceding step. Hence, i, is the variable
of integration and di; = 0. During this time, energy is supplied from both sources
to the coupling field since d 4, is, in general, nonzero. The total energy stored in the
coupling field is the sum of the two evaluations. Following this two-step procedure,
the evaluation of (1.4-21) for the total field energy becomes

04, (i;,0,x
Wiy, iy, %) = / ill(al—,)dil
L

C0A (L 0,%) o 0Ay(I, 0, %)
+ ke Rt ke Ao T e e Ll 14-22
/ [ll o, ethT (1.4-22)

which should be written

b 94 (E,0,
va(ihiz’x):/ g%dé
0

b 0A(i, &%) Ay (i), &%)
+/O [zl 3 +& 3% dg] (1.4-23)
The first integral on the right-hand side of (1.4-22) or (1.4-23) results from the
first step of the evaluation with i; as the variable of integration and with i, = 0 and
di, = 0. The second integral comes from the second step of the evaluation with i,
equal to its final value (di; = 0) and i, as the variable of integration. The order of
allowing the currents to reach their final state is irrelevant; that is, as our first step,
we could have made i, the variable of integration while holding i, at zero (di; = 0)
and then let i; become the variable of integration while holding i, at its final value.
The results would be the same. For three electric inputs, the evaluation procedure
would require three steps, one for each current to be brought mathematically to
its final state.
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Let us now evaluate the energy stored in a magnetically linear system with two
electric inputs and one mechanical input. For this, let

My, 0y, X) = Ly (0)i; + Ly, (0)i, (1.4-24)

Ayiys s X) = Loy ()i + Ly ()i, (1.4-25)

where the self-inductances L;;(x) and L,,(x) include the leakage inductances.
With the mechanical displacement held constant (dx = 0),

dA,(iy, iy x) = Ly, (0)diy + Ly, (x)di, (1.4-26)

d (i, iy, x) = Ly, (0)diy + Ly, (X)di, (1.4-27)

The coefficients on the right-hand side of (1.4-26) and (1.4-27) are the partial
derivatives. For example, L,,(x) is the partial derivative of A,(i;, i,, x) with respect
to i,. Appropriate substitution into (1.4-23) gives

iy i,
Wiy, iy, %) = / L, (OdE + / (i, Ly, () + ELp, ()] dé (1.4-28)
0 0
which yields
.. 1 . .. 1 ;
Wiy, by, X) = ELn(x)lf + L, (0)i i, + ELzz(x)lg (1.4-29)

It follows that the total field energy of a linear electromagnetic system with J
electric inputs may be expressed as

J J
. . 1 .
Willy. ...l = 5 D Lygindy (1.4-30)
p=1g=1

1.5 Electromagnetic Forces

The stage is set for us to obtain expressions for the electromagnetic force in elec-
tromechanical devices. For this purpose, recall that e; in (1.3-21) may be expressed

as
dA;
J
= — 1.5-1
€ dt ( )

If we substitute (1.5-1) into (1.3-21) and if we solve for f,dx, we obtain

J
fdx= )i dA - dW; (1.5-2)

j=1
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Although we will use (1.5-2), it is helpful to express it in an alternative form. For
this purpose, let us first write (1.4-4) for multiple electrical inputs:

J
> A=W, + W, (1.5-3)
j=1
If we take the total derivative of (1.5-3), we obtain
J J
D Adig+ Y iy da; = dW, +dW; (1.5-4)
=1 j=1

We realize that when we evaluate the force f, we must select the independent
variables; that is, either the flux linkages and x or the currents and x. The flux
linkages and the currents both cannot be considered independent variables when
evaluating the force f,. Nevertheless, (1.5-4), wherein both d4; and di; appear, is
valid in general, before a selection of independent variables is made to evaluate f,.
If we solve (1.5-4) for the field energy dW, and substitute the result into (1.5-2),
we obtain

J
fudx ==Y A;di;+dw, (1.5-5)
j=1

Either (1.5-2) or (1.5-5) can be used to evaluate the electromagnetic force f,. If
flux linkages and x are selected as independent variables, (1.5-2) is the most direct,
whereas (1.5-5) is the most direct if currents and x are selected.

With flux linkages and x as the independent variables, the currents are expressed
functionally as

(A -, A X) (1.5-6)

For the purpose of compactness, we will denote (4, ..., 4;, X) as (&, x), where A

is an abbreviation for the complete set of flux linkages associated with the J wind-
ings. Let us write (1.5-2) with flux linkages and x as independent variables:

J
fux)dx =Y (0, x) dA; — dW;(h,x) (1.5-7)

j=1
If we take the total derivative of the field energy with respect to A and x, and
substitute that result into (1.5-7) we obtain

S L oW, oW, (.,
fe(l,x)dx = Z lj()‘wx)dﬂj _ Z f( X)dll _ f( X)dx

(1.5-8)
= 5 o J ox
Equating the coefficients of dx gives
OW,(A, Xx)
%) = ——L"2 (159)

o0x
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If we now select i and x as independent variables, where (i, x) is the abbreviated

notation for (i, ..., i;, x), then (1.5-5) can be written as
7
£G0dx = = Y 4G x)di; + dW, (1) (1.5-10)
j=1

If we take the total derivative of W (i, x) with i and x as independent variables
and substitute the result into (1.5-11), we obtain

fd,x)dx = Z A, x)di; + Z W, (l x) di; + aWC(l’x)dx (1.5-11)

j o0x

Equating coefficients of dx yields

oW, (i, x)

f,G,x T (1.5-12)

We will make extensive use of (1.5-12).

Although only translational mechanical systems have been considered, all force
relationships developed herein may be modified for the purpose of evaluating the
torque in rotational systems. In particular, when considering a rotational system,
f. is replaced with the electromagnetic torque T, and x with the angular displace-
ment @, of the rotating member. These substitutions are justified since the change
of mechanical energy in a rotational system is expressed as

dw,, = —T, do, (1.5-13)

When dealing with machines, we perform a transformation that allows torque
to be calculated more directly from the voltage equations. Nevertheless, the
equations that we have developed for f, given by (1.5-12) can be used to calculate
T,, thatis

0W(l )

1.5-14
=S (1.5-14)

r

Example 1C Detailed calculation of electromagnetic force.

One may prefer to determine the electromagnetic force or torque by starting with
the relationship dW, = dW, +dW,, rather than by selecting a formula from the
text. To illustrate this procedure, let

A =L (1C-1)

First, we must evaluate the field energy. Since losses in the coupling field are
neglected, W, is a function of state. Hence, W, may be evaluated by fixing the
mechanical displacement. This is done by setting dx = 0, whereupon

dW, = dW, = id2 withdx=0 (1C-2)
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where dW, is obtained from (1.3-13) with e, = d4/dt. From (1C-1) with dx =0,
dA = L(x)di ac-3)

Substituting (1C-3) into (1C-2) and solving for W yields

W, = / L(x)édE = %L(x)iz (1C-4)
0

To obtain an expression for f,, we go back to the basic relationship that
de =dW,+dW,; however, now dx # 0. Thus, from (1C-4),

dw, = %iz dz;x)dx + Lidi (1C-5)
Now,
dw, = idi = iz% + L(x)idi (1C-6)
and from (1.3-15),
dw,, = —f,dx ac-7)

Substituting into dW; = dW, + dW, yields
dL(x)

1 ,dL(x) a2 o
SRR e+ L =2—="dx+L - 1C-
21 dx+ L(x)idi =i dx + L(x)idi — f,dx (1c-8)
Equating the coefficients of dx,
1.,dL(x)
fe = 512 (1C'9)

1.6 Steady-State and Dynamic Performance of an
Electromechanical System

It is instructive to consider the steady-state and dynamic performance of the ele-
mentary electromagnetic system shown in Fig. 1.3-3. The differential equations
that describe this system are given by (1.3-7) for the electrical system and (1.3-8) for
the mechanical system. The electromagnetic force f, is expressed by (1.5-12). If the
applied voltage, v, and the applied mechanical force, f, are constant, all derivatives
with respect to time are zero during steady-state operation and the behavior can
be predicted by

v=ri (1.6-1)

f=Kx-x)-f, (1.6-2)
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Equation (1.6-2) may be written as
—f,=f—K(x—xy) (1.6-3)

The magnetic core of the system in Fig. 1.3-3 is generally constructed of fer-
romagnetic material with a relative permeability in the order of 2000-4000 (see
Example 1B). L(x) can be adequately approximated by

L=k (1.6-4)
x
In the actual system, the inductance will be a large finite value rather than infin-
ity, as predicted by (1.6-4), when x = 0. Nevertheless, (1.6-4) is quite sufficient to
illustrate the action of the system for x > 0. Substituting (1.6-4) into (1.5-12) where
W, (i, x) = SL(0)i yields

. ki2
S, x) = 52 (1.6-5)

Aplot of (1.6-3), with f, replaced by (1.6-5), is shown in Fig. 1.6-1 for the follow-
ing system parameters:

r=10Q Xy =3 mm
K =2667 N/m k=6283%x10" H-m

In Fig. 1.6-1, the plot of the negative of the electromagnetic force is for an applied
voltage of 5 V whereupon the steady-state current of 0.5 A. The straight lines repre-
sent the right-hand side of (1.6-3) with f = 0 (lower straight line) and f = 4 N (upper
straight line). Both lines intersect the —f, curve at two points. In particular, the
upper line intersects the —f, curve at 1 and 1’; the lower line intersects at 2 and 2'.
Stable operation occurs at only points 1 and 2. The system will not operate stably at
points 1’ and 2’. This can be explained by assuming the system is operating at one
of these points (1’ and 2") and then showing that any system disturbance will cause
the system to move away from these points. If, for example, x increases slightly
from its value corresponding to point 1/, the restraining force f — K(x — x,) is larger
in magnitude than —f,, and x will continue to increase until the system reaches
operating point 1. If x increases beyond its value corresponding to operating point
1, the restraining force is less than the electromagnetic force. Therefore, the sys-
tem will establish steady-state operation at 1. If, on the other hand, x decreases
from point 1’ the electromagnetic force is larger than the restraining force and the
movable member will move until it comes in contact with the stationary member
(x =0). It is clear that the restraining force that yields a straight line below the —f,
curve will not permit stable operation with x> 0.

The dynamic behavior of the system during step changes in the source voltage
is shown in Fig. 1.6-2, and in Figs. 1.6-3 and 1.6-4 for step changes in the applied
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12

10 I

—f,fori=05A

4 — K (x — xp)

Force, N

X, mm

Figure 1.6-1 Steady-state operation of an electromechanical system in Fig. 1.3-1.

force f. The following system parameters were used in addition to those given pre-
viously:

I=0 M=0.055kg D=4N-s/m

The computer traces shown in Fig. 1.6-2 depict the dynamic performance of the
example system when the applied voltage is stepped from zero to 5V and then back
to zero with the applied mechanical force held equal to zero. The following sys-
tem variables are plotted: e Al fo X, W, Wf, and W,,. The energies are plotted
in millijoules (mJ). Initially, the mechanical system is at rest with x = x, (3 mm).
When the source voltage is applied, x decreases, and when steady-state operation is
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5 Source voltage decreased
vV 0 |_fromStoOV
ep

[ F-Source voltage increased lf

fromOto5V

0.01-
A, Wb -t
0

-5

0
foN

- k-0.025s

0

W,

> MJ

4L

Figure 1.6-2 Dynamic performance of the electromechanical system shown in Fig. 1.3-3
during step changes in the source voltage.

reestablished, x is approximately 2.5 mm. Energy enters the coupling field via W,.
The bulk of this energy is stored in the field (Wf) with a smaller amount trans-
ferred to the mechanical system; some of that is dissipated in the damper during
the transient period while the remainder is stored in the spring. When the applied
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0
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Figure 1.6-3 Dynamic performance of the electromechanical system shown in Fig. 1.3-3
during step changes in the applied force.

voltage is removed, the electrical and mechanical systems return to their original
states. The change in W, is small, increasing only slightly. Hence, during the tran-
sient period, there is an interchange of energy between the spring and mass that
is finally dissipated in the damper. The net change in W during the application
and removal of the applied voltage is zero; hence, the net change in W, is positive
and equal to the negative of the net change in W,,. The energy transferred to the
mechanical system during this cycle is dissipated in the damper since f is fixed at
zero, and the mechanical system returns to its initial rest position with zero energy
stored in the spring.
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Figure 1.6-4 System response shown in Fig. 1.6-2.

In Fig. 1.6-3, the initial state is that shown in Fig. 1.6-2 with 5V applied to the
electrical system. The mechanical force f is increased from zero to 4 N, whereupon
energy enters the coupling field from the mechanical system. Energy is transferred
from the coupling field to the electrical system, some coming from the mechani-
cal system and some from the energy originally stored in the magnetic field. Next,
the force is stepped back to zero from 4 N. The electrical and mechanical systems
return to their original states. During the cycle, a net energy has been transferred
from the mechanical system to the electrical system that is dissipated in the resis-
tance. This cycle is depicted on the A versus i plot shown in Fig. 1.6-4.



References

Problems

1 P. C. Krause, O. Wasynczuk, S. D. Pekarek, and T. O’Connell, Electromechanical
Motion Devices, Third Edition, Wiley and IEEE Press, 2020.

2 P. C. Krause, Analysis of Electric Machinery, McGraw-Hill, 1986.

3 D. C. White and H. H. Woodson, Electromechanical Energy Conversion, John
Wiley and Sons, New York, 1959.

Problems

1.1 A two-winding, iron-core transformer is shown in Fig. 1P-1. N; = 50 turns,
N, =100 turns, and y, = 4000. Calculate L,; and L,,,,.

1.2 Repeat Problem 1 if the iron core has an air gap of 0.2 cm in length and
is cut through the complete cross section. Assume that fringing does not
occur in the air gap, that is, the effective cross-sectional area of the air gap
is 25cm?2.

1.3 Two coupled coils have the following parameters:

5cm|
g

L,;=100mH r;, =10
L,,=25mH r,=25
30 cm

N

30 cm

Figure 1P-1 Two-winding, iron-core transformer.

5 cm

N,

33
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1.4

1.5

1.6

1.7

1.8

N, = 1000 turns N, = 500 turns
L,=01L,; L;,=01L;,

Develop a T equivalent circuit with coil 1 as the reference coil. Repeat with
coil 2 as the reference coil.

A system with two windings has a flux linkage versus a current profile of
0.03\. 0.0,
b= (014 222, - 00,
1 X 1 X 2

0.03\. 0.01.
3o = (00111 4+ 521, - 254
2 o )27 h
The resistance of the coils is r; =1 Q and r, = 0.3 Q. The winding voltage

equations can be expressed in the form:

vy =1y +py

v, =i +pi,

Derive the T equivalent circuit model for this system, assuming coil 1 as
the reference. Show all component values. Label directions of all currents
and voltages.

Obtain (1.2-47).

Determine the input impedance of the coupled circuits given in Problem 3
if the applied frequency to coil 1 is 60 Hz with coil 2 (a) open-circuited and
(b) short-circuited. Repeat (b) with the current flowing in the magnetizing
reactance neglected.

A third coil is wound on the ferromagnetic core shown in Fig. 1P-1. The
resistance is r; and the leakage and magnetizing inductances are L;; and
L,,,, respectively. The coil is wound so that positive current (i) produces
@, . in the same direction as @,,; and @,,. Derive the T equivalent circuit
for this three-winding transformer. Actually, one should be able to develop
the equivalent circuit without derivation.

A resistor and an inductor are connected as shown in Fig. 1P-2 with
R =15 Q and L = 250 mH. Determine the energy stored in the inductor
W ¢ and the energy dissipated by the resistor W, for i > 0 if i(0) = 10 A.



Problems

Figure 1P-2 R-L circuit. i

L@D 2R

1.9 Consider the spring-mass-damper system shown in Fig. 1P-3. At ¢t = 0,
x(0) = x,, (rest position) and dx/dt = 1.5 m/s. M = 0.8 kg, D = 10 N - s/m,
and K = 120 N-m. For >0, determine the energy stored in the spring
W ., the kinetic energy of the mass W, ,, and the energy dissipated by

msl? ms2?
the damper W ;.
Figure 1P-3 X

Spring-mass-damper system.

7

1.10 For the system shown in Fig. 1P-4, determine the winding inductance if the
leakage inductance is one-tenth of the magnetizing inductance. If 10V is
applied to the winding at t = 0 s, determine W and the force of attraction
that acts to attempt to reduce the gapatt =1s.

1.11 Express W,(i, x) and W (i, x) for (a) A(i, x) = i23x% and (b) A3, x) =
kisin (x/a)x — xi.
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1Q
>
\
v < 10 Turns gap = 4 z mm
\
< core cross sectional
— area =0.01 m?

Figure 1P-4 Core configuration.

1.12

1.13

1.14

1.15

1.16

1.17

An electromechanical system has two electrical inputs. The flux linkages
may be expressed as

Iq(iys iy, %) = XP12 + X,
PR 22 .
Ay(iy, iy, X) = X715 + Xi;

Express Wf(il, iy, x)and W (i, i,, X).

Express f,(i, x) for the electromechanical systems described by the relations
given in Problem 11.

Express f,(i;, i,, x) for the electromechanical system given in Problem 12.
Refer to Fig. 1.6-2. Following the system transients due to the application
of the source voltage (v = 5 V), the system assumes steady-state operation.

For this steady-state operation, calculate W g, Wy, and W .

Refer to Fig. 1.6-3. Repeat Problem 15 for steady-state operation following
the application of f =4 N.

Refer to Fig. 1.6-4. Identify the area corresponding to AW,, when (a) x
moves from 2.5 to 4.3 mm and (b) x moves from 4.3 to 2.5 mm.



2

Symmetrical Three-Phase Stator

2.1 Introduction

For analysis purposes, the stators of synchronous and induction machines are
essentially the same. Therefore, in this chapter, we will treat the stator once for
both types of machines. The rotors, however, are different and the modes of oper-
ation are different.

In this chapter, the rotor is assumed to be cylindrical thus a uniform air gap.
The two-pole electric machines, synchronous or induction, have the same air-gap
length every = radians for a two-pole device. We will analyze the two-pole sta-
tor using reference frame theory. In Chapter 3, we will show that all machines
can be treated as two-pole devices. The extension to any number of pole pairs is
straightforward, accomplished by a simple change of variables.

2.2 Stator Winding Configuration and Air-Gap mmf

The stationary member (stator) of the electric machine is an important part of the
device. For analysis purposes, it is essentially the same for synchronous and induc-
tion machines. Therefore, we need to treat it only once. The windings of the stator
are distributed to produce a space sinusoid of mmf. We find that in order to achieve
this, we must have a sinusoidal distribution of the windings. In practice, we can
only approximate a sinusoidal winding distribution. In the case of synchronous
generators, the design of the stator mmf space harmonics is important since these
harmonics cause harmonics in the output voltage. This is of less importance in the
case of an induction motor. In the analysis of ac machines, we often consider only
the fundamental component of the stator mmf.

The stator windings are shown in Fig. 2.2-1. As we can see, this multiphase stator
is very involved. In this section, we are going to consider the stator windings as
simply as possible. To form the stator of an electric machine, conductive wire is

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/krause_aem4e
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Conductors

Figure 2.2-1 Stator windings of a multiphase machine.

wound in slots in an iron structure. The number of turns or coils of the stator
windings of most ac machines is distributed to approximate a space sinusoid as
shown in Fig. 2.2-2.

‘We will use s as a subscript or superscript for stator or stationary member. Also
in Fig. 2.2-2, the “as” subscript denotes the variables associated with the a phase
of the stator. In synchronous generators, great pains are taken to closely approxi-
mate a sinusoidal distribution of the stator windings to meet harmonic specifica-
tions. We attempt to distribute windings sinusoidally because sinusoidal currents
through sinusoidally distributed windings create a constant-amplitude rotating air
gap mmf. We will use the terms rotating air gap mmf and rotating magnetic field
interchangeably.

In Fig. 2.2-2, each coil, as, — as}, as, — as), ..., as, — as), has nc, turns for each
® or ©. Positive current is into the paper indicated by ® and out of the paper at
©®. The current through the windings is alternating so the cross, ®, and ©, will
change; however, we are looking at an instant of time where the positive current
isin at as,, as,, ..., as,.

The winding distribution is shown in Fig. 2.2-2(a), Ampere’s law ( 55 H-dL=i)is
shown in Fig. 2.2-2(b), and a developed plot of mmf, is shown in Fig. 2.2-2(c). This
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as axis
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Figure 2.2-2 (a) The as winding. (b) Ampere’s Law (c) mmf .
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linear plot is possible since the radius is much larger than the length of the air gap.
Each coil as — as’ spans z radians for the two-pole device and the positive as axis is
determined by the current direction and the right-hand rule. Figures 2.2-2(a) and
2.2-2(b) are cross-sectional views of the stator.

If we follow the path of assumed positive current i, flowing in the as winding,
we see that current enters as,, depicted by ®, to indicate that the assumed direction
of positive current is down the length of the stator in an axial direction (into the
paper). Current flows down the length of the stator, loops at the end, and flows
back down the length of the stator and out at as}, depicted by ©. Note that as, and
as’ are placed in stator slots that span # radians. This is referred to as the winding
pitch of x radians, which is characteristic of a two-pole machine. Now, as, around
to as; is referred to as a coil and as, or as] is a coil side. In practice, a coil will
contain more than one conductor. Current flows into as, in a conductor and out
as’1 via the same conductor. The conductor, which is insulated, may then be looped
back to as; and the winding of the conductor around the as, — as} path repeated,
thereby forming a coil with numerous turns. The number of conductors in a coil
side tells us the number of turns in the coil, which is denoted nc,.

Once we have wound nc, turns in the as, — as] coil, we will take the same con-
ductor and repeat this winding process to form the as, — as/, coil. We will assume
that the same number of turns (nc;) make up the as, — as), coil as the as, — as}
coil and, similarly, for all stator coils. We could have wound a different number of
turns in each coil but we will assume that this was not done. Once the winding
is wound, we can use the right-hand rule to give a meaning to the as axis shown
in Fig. 2.2-2(a). It is, by definition, the principal direction of the magnetic flux
established by the assumed positive current flowing in the as winding. It is said to
indicate the assumed positive direction of the magnetic axis of the as winding of
this elementary sinusoidally distributed winding. The positive direction of the as
axis reverses when i, reverses.

Using Fourier analysis, the mmf,, waveform shown in Fig. 2.2-2 may be
expressed as a Fourier series, e.g.,

mmf, = 2.37 nc, i, (cos ¢, + 0.179 cos 3¢, + ...) (2.2-1)

s ras

If the windings are assumed to be distributed sinusoidally with a peak turns
density of N, turns/rad, it can be shown via Ampere’s law that

N,
mmf, = ~ lasCOS o} (2.2-2)

Although an exact sinusoidal winding distribution cannot be achieved in prac-
tice (it can only be approximated), it is typically reasonable to neglect the harmonic
components in (2.2-1) and approximate mmf,  using (2.2-2). We are considering
the mmf dropped across one air gap rather than the total mmf dropped. Here, we
are considering a uniform air gap; however, as we have mentioned, in two-pole ac
machines, the air gap is the same z radians of a nonuniform rotor.



2.3 Transformation Equations

For a two-phase stator, the bs winding is identical to the as winding but shifted
x/2 radians either clockwise (cw) or counterclockwise (ccw) from the as winding.
In a double-layer two-phase winding, each slot could contain as and/or bs coils.
For a ccw shift, mmf,; may be approximated as

Ns . .
mmf, = ~ Ipssin o} (2.2-3)

For a three-phase machine, the as, bs, and cs windings are identical and dis-
placed 2?” radians apart from one another. In this case, each slot in a double-layer
winding distribution such as that shown in Fig. 2.2-2 would contain two as, two
bs, two cs, an as and bs, or a bs and cs coil. The corresponding mmf,; and mmf
may be approximated as

N,

mmf,, = fibs cos <¢s - %”) (2.2-4)
N,

mmf, = ?Sics cos (d)s + 2?7[) (2.2-5)

Tesla’s rotating magnetic field is obtained by adding mmf,; and mmf, for a
two-phase stator or mmf,,, mmf, , and mmf, for a three-phase stator. In particu-
lar, if we neglect, as Park did [1], the harmonic components of mmf, we have for

the two-phase stator.

mmf, = mmf, + mmfy
NS . . .
= 7(1(” Ccos ¢, + i Sin ¢,) (2.2-6)
For a three-phase stator

mmf; = mmf, + mmf,, + mmf

N,
= ?s iy COS g + i COS (q&s - 2?”) + i, COS (d)s + 2;”)] (2.2-7)

2.3 Transformation Equations

Park considered only sinusoidally distributed windings in his classic paper on the
analysis of synchronous machines [1]. Thus, Tesla’s rotating magnetic field would
include only the fundamental component as given in (2.2-6) and (2.2-7). We are
going to use these equations for Tesla’s rotating magnetic field to determine the
transformation equations, but first let us consider Fig. 2.3-1, which represents a
three-phase stator.

In Fig. 2.3-1, the as, bs, and cs windings are each shown by two circles placed at
the point of maximum winding density of sinusoidally distributed windings. The
three windings are identical whereupon the stator is termed a symmetrical stator.
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bs axis Figure 2.3-1 Elementary two-pole
three-phase sinusoidally distributed
stator windings.

q axis

as axis

cs axis d axis

Ips

Also, we have added q and d axes, which are displaced from the as axis by the angle
0 and ¢ is the displacement from the g axis. We can express ¢, as

b =0+ (2.3-1)

The angular velocity of the g and d axes, which we can select depending on
which reference frame we wish to use, is

deo(r)

Here, w is the speed of the reference frame, w, is the rotor angular velocity, and
w, is the frequency of the stator applied voltages. For steady-state operating condi-
tions, w, and w, are constant and w is generally selected to be constant. We realize
that we have introduced terms that may be new to many of us; however, these
terms will be made clear as we go along.

Substituting (2.3-1) into (2.2-7) and after some work, we have

N,
mmf, = 75 cos ¢ [ias cos 6 + iy, cos (0 - 2?7[) + i, cos (0 + 2?”)]

N,
—73 sin ¢ [ias sin 0 + iy, sin (9 - 2{) + i, sin (0 + 2%)] (2.3-3)



2.3 Transformation Equations

Figure 2.3-2 Fictitious gs and ds

windings. g ax1s

d axis

Equation (2.3-3) is the air gap mmf established by the three-phase stator. If we let
¢ =0, then we are looking at mmf along the g axis and the sum of currents inside
the[ ] are iq s» Which we call a substitute current, that flows in a fictitious gs winding
as shown in Fig. 2.3-2. Note that the gs winding is displaced % degrees from the
g axis. The second axis is the d axis and with ¢ = —%, the sum of currents inside
the [ ] are iy, which is assumed to flow in a fictitious ds winding. We now have
two substitute currents (i, and iy) and two fictitious (gs and ds) windings. The
substitute currents i, and iy, flowing in the fictitious gs and ds windings produce
the same mmf; that is produced by the actual and i, flowing in the physical
as, bs, and cs windings [2].

Since we have two substitute currents, we need a third substitute variable since
we are replacing three stator currents (i, iy, and i,,). We will call the third sub-
stitute variable the zero current, which is defined as

as> lbss

. 1. . .
los = g(las + iy + lcs) (2'3_4)

The expression for zero current is independent of # and, from (2.3-3), does not
contribute to mmf,.

We are now at a stage where we can define a transformation of as, bs, and cs
variables into gs, ds, and Os variables. In matrix form [3, 4]

cosf cos(O—2) cos(0+ %
qu 3 3
as
2
Jos | = 3| siné sin (0 - %”) sin (0 + %”) Jos (2.3-5)
Jos 1 1 1 s
2 2 2

The 2 factor was introduced by Park [1] and we have replaced i with f, where f
can be i, v, or A. That is, we will use the same transformation equations for all elec-
trical variables (currents, voltages, and flux linkages). Eq. (2.3-5) can be expressed
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symbolically as

fqus = stabcs

(2.3-6)
where K is the transformation of stator variables to gs, ds, and Os variables. The

inverse of K| is

cos 6 sin @ 1
(K, = |cos (6 - 2?”) sin (9 - 2?”) 1 (2.3-7)
cos <9+ 2?”) sin <9+ 2;”) 1
and the inverse transformation may be expressed as

cos sin 6 1
as f gs
2z

fis | = cos (9 - ?> sin (9 — %’r) 1 s (2.3-8)
fos cos<9+2?”> sin(0+2?”> 1] Jos

The transformations K, and (K;)™! are for stator variables as, bs, and cs to and
from the arbitrary reference frame variables gs, ds, and 0s. Expanding (2.3-8) into
three scalar equations reveals that the zero-variable f, contributes equally to the
as, bs, and cs variables. It will later be argued that in many cases the zero vari-
ables (iy,, vy, and/or Ay) are identically equal to 0. Although the as, bs, and cs
variables are associated with stationary (stator) windings, the gs and ds variables
are substitute variables associated with fictitious windings that rotate at w, which
we can select. Each selection of w establishes a reference frame. There are an infi-
nite number of reference frames; however, we generally use w = 0 stationary or
stator reference frame, w = w, a reference frame fixed at the rotor speed, or w = w,
the synchronously rotating reference frame. Let us think about this for a minute.
When we select a reference frame, we select where the fictitious circuits are placed.
With @ = 0, the circuits are stationary. The question to ask yourself is what would
be the steady-state frequency of the balanced substitute variables to cause Tesla’s
rotating magnetic field to rotate at w,. The answer is the frequency of the substi-
tute variables would be w,. We already knew this since the as, bs, and cs circuits
are stationary and the frequency of the stator variables is w,.

If we select w = w, the fictitious circuits are rotating at w,. In this case, the
steady-state frequency of the variables flowing in these circuits in order to have
mmf; rotate at w, is dc. Now, fixing the circuits at the rotor speed w,, which
we will say varies from zero to w,, the circuits are changing speed from w, = 0
to w,. The balanced substitute variables w, have a frequency of w, when w = 0
and dc when o, reaches w,. Actually, reference frame theory is nothing more
than changing the frequency of the substitute variables to portray mmf, from the
selected reference frame.



2.3 Transformation Equations

The % factor in (2.3-5) was introduced by Park, which makes the f 4, variables
equal in magnitude to the f,  variables. This must be accounted for when we
calculate power and torque. We are taking a three-phase system (as, bs, and cs)
and considering it as a two-phase system (gs and ds), but we have reduced the
three-phase system back to a two-phase system with the % factor. Therefore,
we must multiply the power by % when using substitute variables to obtain the
three-phase power. Now, f, is not a function of the angular velocity w; therefore,
the zero variables do not contribute to the torque, only the gs and ds variables do.
We will see this when we calculate torque of machines.

The mmf; given by (2.3-3) can be expressed in terms of gs and ds currents as

N,
mmf, = f(iqs cos ¢ + iy Sin ¢). (2.3-9)

We are starting to see that the gs and ds variables, associated with fictitious cir-
cuits rotating at w angular velocity, will have the steady-state frequency that is
necessary to portray the rotating mmf as viewed from the w reference frame. We
will talk more about this as we go along.

We should do one more thing before leaving this section. Let us assume that the
steady-state three-phase stator variables are

F,, = V2F, cos[@,t + 0,,/(0)] (2.3-10)
Fp = \/EFS cos [a)et - %7[ + eesf(O)] (2.3-11)
F,, = V/2F,cos [a)et + %ﬂ + aesf(O)] (23-12)

These variables form a balanced three-phase set of abc sequence and if these
currents are flowing in as, bs, and cs two-pole windings shown in Fig. 2.3-1 they
will produce a magnetic field rotating ccw at w, (synchronous speed). Substituting
(2.3-10)~(2.3-12) for currents into (2.3-5) to obtain I ,; and I ;; and then substituting
these currents into (2.3-9) and with (2.3-1) for ¢, and with 6(0) = 0, we obtain

mmf, = V21,3 cosl(@, ~ o)t +6,,(0) ~ 4] (2.3-13)

If now we view this from the synchronously rotating reference frame, v = w,,
we have

N, 3
mmfy = =° V21,2 cos[0,4(0) ~ ¢b,] (2.3-14)
where 6,,;(0) is the phase angle of the stator phase currents, I, is the rms value of

the stator currents, and ¢, is the displacement from the g axis in the synchronous
reference frame. If 0,,(0) is the negative value, we can plot mmf; as shown in
Fig. 2.3-3 [5]. We see that 6,;(0) is the position at which mmf; is a positive maxi-
mum, which is the location of the stator south pole S°.
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| mmf?

Do et

_ V2N, i 4
I 2 &
N*

Figure 2.3-3 Tesla’s balanced steady-state rotating magnetic field (mmif) viewed from
—r to z by an observer rotating counterclockwise about the air gap at w, with 6(0) =0
and @,(0) is negative. This is the synchronously rotating reference frame.

esi

If we had 2z vision, Fig. 2.3-3 is what we would see if we ran at w, in the ccw
direction. It is a constant for balanced steady-state conditions. Note that the stator
poles N*® and SS are located at maximum positive and negative currents (mmf;).

2.4 Voltage Equations in Arbitrary Reference Frame

The voltage equations in the arbitrary reference frame may be obtained by first
expressing the phase voltages as

di
Vas = Flog + d_;zs (2.4-1)
o da,
Vps = Tslps + d_ts (2.4-2)
dA
Ves = rsics + d_tcs (2.4-3)
which may be written as
Vabes = l.siabcs + p)“ab(_‘s (24‘4)
where
r.=rl (2.4-5)

N N
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and p is the operator d%. From (2.3-6), (2.4-4) can be written as

(Ks)_lquOS = rs(Ks)_liquS + p(Ks)_l)“quS (2’4_6)
Multiplying by K, gives
quOs = rSiquS + Ksp(Ks)_l)“quS + KS(KS)_IP)\‘quS (2'4-7)

The second term on the right-hand side becomes

[cos 6 cos <0— 2?”) cos <0+ %”)
_ 2
K,p(K;) 17‘qd0s =3 sinf sin (9 — 2?”) sin (0 + %”)
1 1 1
L 2 2
[ —siné cos @ 0

@ —sin(H—%”) cos(&—%’”)O /132
—sin<0+2?”) cos(9+2?”>0 Aos

[0 1 0]] 44
=w|[-10 0 A (2.4-8)
| 0 00| A,
The third term is
KS(KS)_IP)\’quS = p)"qus (24-9)
From (2.4-7) through (2.4-9), the voltage equations are
Vados = rSiquS + a))“dqs +p;"qd0§ (2.4-10)
where
hags = | % (2.4-11)
dgs _j'qs .
In expanded form
Vgs = Tglgs + @Ag + PAg (2.4-12)
Vas = Tslgs — C0’1qs + P (2.4-13)
vOs = rSiOS +p’10s (2-4'14)

These are the voltage equations for the three-phase stator in the arbitrary ref-
erence frame. We have the flux linkages to deal with now. In particular, we can
express Ay, Ay and A, as

1 1
Lls + Lms _ELms _ELms i
as as
1 1 .
/lbs = _ELms Lls + Lms _ELms Lps (2.4-15)
ics 1 1 i
_ELms _ELms Lls + Lms “
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Let us consider Fig. 2.3-1 to define the inductances given in (2.4-15).
In Chapter 1, we talked about leakage and magnetizing inductances (L; and
L,,) when considering the two-winding transformer. These inductances are L
and L, in (2.4-15). In particular, L is the leakage inductances of each phase wind-
ing shown in Fig. 2.3-1. That is, due to the flux that does not cross the air gaps. The
magnetizing flux (inductance) occurs due to the flux at each phase winding that
crosses the air gap, travels through the rotor iron, and crosses the second air gap.

The mutual coupling between the phase given in (2.4-15) is the coupling
between phases. If we take the bs winding and move it cw through the iron until
it is atop the as winding the mutual inductance would be L, .. Now as we move
the bs winding back to its original position the mutual coupling would vary as a
cosine of the angle between the axes of the as and bs winding. When it gets to its
original position of 120°, the coupling is the cosine of 120°, or —%Lms. Thus, the
off-diagonal terms in (2.4-15) are —%Lms.

Now if the stator windings are connected in wye without a neutral connection,
the zero-current for balanced or unbalanced conditions is zero. That is

. 1,. , .
fos = 3 (lgs + ips +ics) =0 (2.4-16)
whereupon (2.4-15) may be written
ias Lls + LMs 0 0 ias
Aps | = 0 L+ Ly, 0 Ips (2.4-17)
’lcs 0 0 Lls + LMS Les
where
3
LMS = ELms (2.4-18)

We can also write (2.4-15) as

)"abcs = Lssiabcs (2'4_19)
In terms of substitute variables, (2.4-19) becomes

(K) ™ Agqos = LK) ™05 (2.4-20)
Multiplying by K, (2.4-20) becomes

kquS = LssiquS (2.4-21)

In expanded form

Aqs =Ly + LMS)iqS (2.4-22)

Aas = (Lig + Ly )igs (2.4-23)

Ags = Lislog (2.4-24)

In (2.4-24), L, is zero since the as, bs, and cs phases are mutually coupled and
the zero-current i, if nonzero, contributes equally to all three phases with the



2.5 Transformation Between Reference Frames

Figure 2.4-1 Arbitrary reference s
. . . r ds L
frame equivalent circuits for stator s ) Is
substitute variables. AN\ 00N
+ .- + -
i
qs
Vgs Ly
g /w% L/S
00N
+ VWV \_+
g
Vds ' LMx
s Lls
" A% 00
iOA‘
Vos

corresponding mutual coupling terms canceling to zero. The equivalent circuits
for the substitute variables in the arbitrary reference frame can be obtained from
(2.4-12) through (2.4-14) and (2.4-22) through (2.4-24) as given in Fig. 2.4-1.

2.4.1 Electric Power

The instantaneous electric power in terms of abc variables may be expressed as
P, = VaTbcsiabcs
= [(KS)_lquOS]T(Ks)_liquS
= ngm [(Ks)_l] T(Ks)_lichs (2.4-25)

Carrying out the matrix operations and simplifying

3 . . .
P, = E(vqslqs + Vgglas) + 3Vggios (2.4-26)

The preceding equation is valid in any reference frame for steady-state or
dynamic operating conditions.

2.5 Transformation Between Reference Frames

In some derivations and analyses, it is convenient to relate variables in one refer-
ence frame to variables in another reference frame directly, without involving the
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o, Figure 2.5-1 Transformation
’ between two reference frames
- portrayed by trigonometric
relationships for o < w,.
//
. 7
‘),
Ja Wy
Pt

fis
JSis

abc variables in the transformation. To establish this transformation between any
two frames of reference, let x denotes the reference frame from which the variables
are being transformed and y denotes the reference frame to which the variables are
being transformed. Thus,

f;/dOS = xKyf()]chS (2.5-1)
From (2.3-6)
f;dOS = Kfvcfabcs (2.5-2)

Substituting (2.5-2) into (2.5-1) yields

f;}dOS = xKyK)Scfabcs (2.5-3)
However, from (2.3-6)

£ 105 = Kifunes (2.5-4)
Thus

KK =K (2.5-5)



2.6 P-Pole Machines

from which
K=K} (KY) ! (2.5-6)

The desired transformation is obtained by substituting the appropriate transfor-
mations into (2.5-6). Hence

cos(d, — 6,) — sin(9y -0,)0
K =|sin(0, - 6,) cos6,—6,) 0 (2.5-7)
0 0 1

Several of the trigonometric identities given in Appendix A are useful in obtain-
ing (2.5-7). This transformation, which is sometimes referred to as a “vector rota-
tor” or simply “rotator,” can also be visualized from the trigonometric relationship
between two sets of rotating, orthogonal quantities as shown in Fig. 2.5-1. Resolv-
ing £ and £ into fy; yields the first row of (2.5-7) and resolving £ and f} into f
yields the second row. It is left for the reader to show that

(K™ = (R)T (2.5-8)

2.6 P-Pole Machines

Let us take a minute to see what happens when we have pole pairs larger than two.
The magnetic axes of a two-pole and a four-pole three-phase stator are shown in
Fig. 2.6-1. The mmf; may be expressed in the synchronous reference frame for
the two-pole device by (2.3-13). The poles are for balanced stator currents with I
positive maximum and I, and I, negative at one-half maximum. The mmf; for
the four-pole stator may be expressed as

3N
22

Where P = 4. Now, the frequency of the stator currents is w,; however, the speed
of the rotating mmf has been reduced by g from the two-pole device.

Although the synchronous speed of the stator variables is @,, the synchronous
speed of the rotating magnetic field is %we. Thus, the electrical angular veloc-
ity of the rotating magnetic field is said to be w, even though its actual speed
is 2,

p e

mmf; =

\/EIS Cos [Hesi(o) - §¢e] (2.6-1)

_ 2
m = l_ga)e
The electrical system is convinced that the rotating magnetic field is trav-
eling at w,. This is termed the electrical angular velocity of the magnetic

field.

@ (2.6-2)
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Four-pole mmf

Figure 2.6-1 P-pole stator for 6,,;(0) = 0.

2.7 Transformation of a Balanced Set

Although the transformation equations are valid regardless of the waveform of
the variables, it is instructive to consider the characteristics of the transformation
when the three-phase system is symmetrical and the voltages and currents form
balanced three-phase sets of abe sequence as given by (2.7-1)-(2.7-4). A balanced
three-phase set is generally defined as a set of equal-amplitude sinusoidal quan-
tities that are displaced by 2?” Since the sum of this set is zero, the Os variables are

Zero.



2.7 Transformation of a Balanced Set

Jos = \/Efs Cos 0, (2.7-1)
2
fos = \/Efs cos <Hef - ?ﬂ) (2.7-2)
2
fos = \/Efs cos (Hef+ %) (2.7-3)
where f¢ may be a function of time and
= 2.7-4
ar 2.7-4)

Substituting (2.7-1)-(2.7-3) into the transformation to the arbitrary reference
frame (2.3-5) yields

fos = V2f, cos(0,— 0) (2.7-5)
Jas = _\/Efs sin(, — 6) (2.7-6)
Jos =0 (2.7-7)

With the three-phase variables as given in (2.7-1)-(2.7-3), the gs and ds variables
form a balanced two-phase set in all reference frames except when o = w,. In this
synchronously rotating reference frame, the gs and ds quantities become

= V/2f, cos(0, — 0,) (2.7-8)
= —\/2f,sin(0, — 0,) (2.7-9)

where 6, is the angular position of the synchronously rotating reference frame.
It is important to note that 6, and 6, both have an angular velocity of w,. Hence,
0, — 0, is a constant dependent upon the initial values of the variable being trans-
formed, 6,,(0), and the initial position of the synchronously rotating reference
frame, 6,(0). Equations. (2.7-8) and (2.7-9) reveal a property that is noteworthy.
Therefore, there is one reference frame where a balanced set will appear as
constants if the amplitude f; is constant. In other words, if a constant-amplitude
balanced set appears in any reference frame, then there is another reference frame
where this balanced set appears as a set of constants. The converse is also true.

For balanced steady-state conditions, the amplitude and frequency are constants
and 0, becomes w,t + 0,,(0) whereupon (2.7-1)-(2.7-3) may be expressed as

Foy = V2F, cos [0t + 0,(0)]
— Re [\/EFsefﬁeﬂO)erc‘] (2.7-10)
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F,, = V/2F, cos [a)et +0,(0) — 2?”]

=Re [\/EFsef“’ef<°>—2”/3'efwe‘] (2.7-11)

Fy = V2F,cos [w,t+ 6,0+ 2?”]
—Re [\/EFsej[gff'(O)+2”/3]eja’a‘] (2.7-12)

where 6,,(0) corresponds to the time zero value of the three-phase variables.
Uppercase notation is used to denote steady-state quantities. If the speed of
the arbitrary reference frame is an unspecified constant, then for the balanced
steady-state conditions, (2.7-5) and (2.7-6) may be expressed as

Fyy = V2F, cos [(@, — )t + 6,4(0) — (0)]
— Re [\/QFsej[ea,@—e(onej(we—wn] (2.7-13)

Fy = —V/2F,sin [(@, — @)t + 0,4(0) — 0(0)]
=Re [j\/EFsefWef<°>—0<°>] e"<we—w)‘] (2.7-14)
From (2.7-10), the phasor representing the as variables is
Fyy = Fe%© (2.7-15)

In Section 2.7-3, we denoted the phase angle associated with I (t) as 6,,;(0) and
noted that it is the location of the stator south pole S°. This implies that we can
superimpose S° at the tip of Tas in a phasor diagram. The north pole N* is located
180" from S°.

If w#w,, then Fy; and F are sinusoidal quantities, and from (2.7-13) and
(2.7-14) with 6(0) =0

Fy =Fe%" =F, (2.7-16)

Fy =jF, (2.7-17)

If we look at (2.7-13) and (2.7-14), we see that when the reference frame speed
 becomes greater then w,(w > w,), the frequency of (2.7-13) and (2.7-14) changes
sign. This causes mmf; to rotate cw rather than ccw for w < w,. In other words,
mmf, always rotates toward w,. For w # @, and 6(0) = 0 (2.7-13) becomes

F,, = Re{F @@} (2.7-18)
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This implies that phasors rotate ccw for ® < w, and cw for w > w,. In the
synchronously rotating reference frame w = w, and 6(0) = 6,(0). If we continue
to use uppercase letters to denote the steady-state variables in the synchronously
rotating reference frame, then from (2.7-13) and (2.7-14)

Fgg=Re [\/EFse""’ef<°)‘9e(°“] (2.7-19)
Fé =Re [j\/EFsef“"ef(")‘*’c@”] (2.7-20)

If we let the time-zero position of the reference frame be zero, then 6,(0) = 0 and

F¢, = V/2F,c0s0,(0)

(2.7-21)

N

mmf
O 4t—
0
Fy, = jF,
(w,~w)
Fqs = Las

'\/Eﬁax = FZS _sts

Figure 2.7-1 Direction of rotation of mmf_ and the phase relation between IN-'qS and F,, as
viewed from the arbitrary reference frame when w <, and w > w, for balanced
steady-state conditions.
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F8, = —V/2F,s5in 0,(0) (2.7-22)
Thus, we see from a comparison of (2.7-15) with (2.7-21) and (2.7-22) that
V2F, = F, - jF%, (2.7-23)

Since F,, = It"qs, (2.7-23) is important in that it relates the synchronously rotat-
ing reference-frame variables to a phasor in all other reference frames. F is a
phasor that represents a sinusoidal quantity; however, F; and F; are not pha-
sors. They are real quantities representing the constant steady-state variables of
the synchronously rotating reference frame. This is all summarized in Fig. 2.7-1.
It should be noted that the ds variable leads the gs variable when o < ®, and lags
it when o > o,.

2.8 Instantaneous and Steady-State Phasors

The synchronously rotating reference frame can be thought of as a synchronously

rotating complex plane as shown in Fig. 2.8-1 whereupon we can think of f;; and
", as fos, an instantaneous phasor of phase as variables. This would include the
steady-state and transient response for balanced conditions for a three-phase sta-

tor. From Fig. 2.8-1, we can write

TosD) = F20 = if5 () (2.8-1)

Figure 2.8-1 The g and

g axis d complex plane.

= as axis

fas

d axis




2.9 Variables Observed from Several Frames of Reference

Note that in Fig. 2.7-1 we are plotting phases ?qs and I?ds which are equal in
magnitude. In Fig. 2.8-1, we are plotting instantaneous values, f7; and f7

Substituting the voltage equations in the synchronously rotating reference frame
into (2.8-1) yields, for balanced conditions,

Vi — Vo = it + 0,45 + PAS, — J (1S, — @, A% + PAS) (2.8-2)
In terms of instantaneous phasors

Vo = rid +jo, Ay + Py (2.8-3)

as S as e as

Once the transient subsides, the if; and i} become constant only in the syn-
chronous reference frame and p4,, becomes zero and (2.8-3) becomes

as = Fslas

<

+jo, ias (2.8-4)

Now, (2.8-4) is expressed in instantaneous variables and must be divided by \/5
to be expressed in terms of steady-state phasors. Also, for a magnetically linear
stator and the rL circuit being considered

Dos = Lyl (2.8-5)
Thus (2.8-4) becomes

Vo = (r + jo, SS) (2.8-6)
where

Ly =Ly + Ly, (2.8-7)

2.9 Variables Observed from Several Frames
of Reference

It is instructive to observe the waveform of the variables of the stator shown in
Fig. 2.3-1 in commonly used reference frames. For this purpose, we will assume
that both r; and L are diagonal matrices each with equal nonzero elements and
the applied voltages are of the form

= \/EVS Cos w,t (2.9-1)

Vps = \/EVS cos <a)et - 2—”) (2.9-2)

3

= \/EVS cos (coet + 2?”) (2.9-3)
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58 | 2 Symmetrical Three-Phase Stator

where w, is an unspecified constant. The currents, which are assumed to be zero
at t = 0, may be expressed as

V2v,

iy = |T|S [—e™/7 cos a + cos(w,t — a)] (2.9-4)
N
. \/EVS t 27 2
= 22 [ cos (a+ 2 ) +cos (ot —a - )] 29-5
s A [ e"/cos|a+ 3 + cos | w,t — a 3 ( )
. \/EV _t/r 2z 2w
i = |Ts|s [—e /7 cos (a - ?> + cos (a)et —a+ ?)] (2.9-6)
where
Zy =T+ o, Ly (2.9-7)
L
r=-2= (2.9-8)
rS
w,L
o =tan~t 4= (2.9-9)
rS

It may at first appear necessary to solve the voltage equations in the arbitrary
reference frame in order to obtain the expression for the currents in the arbitrary
reference frame. This is unnecessary since once the solution is known in one refer-
ence frame it is known in all reference frames. In the example at hand, this may be
accomplished by transforming (2.9-4)-(2.9-6) to the arbitrary reference frame. If
we let w be an unspecified constant with 8(0) = 0, then 6 = wt and in the arbitrary
reference frame

V2v,

igs = W{—e—‘/f cos(wt — a) + cos[(w, — o)t — a]} (2.9-10)
ige = %{—e_‘ﬁ sin(wt — a) — sin[(w, — ©)t — al} (2.9-11)

For balanced conditions, the Os variables do not exist. We have taken symmet-
rical three-phase rL circuits each displaced 2z/3 radians and, by the change of
variables, converted it to a symmetrical two-phase orthogonal circuit.

Clearly, the state of the electric system is independent of the frame of reference
from which it is observed. Although the voltages and currents will appear
differently in each reference frame, they will exhibit the same mode of operation
(transient or steady state) regardless of the reference frame. In general, (2.9-10)
and (2.9-11) contain two balanced sets. One, which represents the electric
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transient, decays exponentially at a frequency corresponding to the instantaneous
angular velocity of the arbitrary reference frame. In this set, the gs variable leads
the ds variable by g when w >0 and lags by % when w < 0. The second balanced
set, which represents the steady-state response, has a constant amplitude with a
frequency corresponding to the difference in the angular velocity of the voltages
applied to the circuits and the angular velocity of the arbitrary reference frame. In
this set, the gs variable lags the ds by % when w < w, and leads by % when v > w,.

There are two frames of reference that do not contain both balanced sets. In the
stationary reference frame, w = 0 and i3, = i, The exponentially decaying bal-
anced set becomes an exponential decay and the constant-amplitude balanced set
varies at @,. In the synchronously rotating reference frame where w = w,, the elec-
tric transients are represented by an exponentially decaying balanced set varying
at o, and the constant amplitude set becomes a set of constants.

The waveforms of the system variables in various reference frames are shown
in Figs. 2.9-1-2.9-3. The voltages of the form given by Figs. 2.9-1-2.9-3 are applied
to the three-phase circuits with V, = 1—\% V, r, =0216Q, o, L, = 1.09Q with

ess

, = 377 rad/s. The response, for t> 0, of the electric system in the stationary
reference frame is shown in Fig. 2.9-1. Since we have selected 6(0) =0, f; = f;, and
the plots of v, and iy, are v, and i, respectively. The variables for the same mode
of operation are shown in the synchronously rotating reference frame in Fig. 2.9-2.
Note, from Figs. 2.9-1-2.9-3, that we have selected 6,,(0) = 0 and since 6(0) = 0,
vgs =10Vand v;s = 0. In Fig. 2.9-3, with 6(0) = 0, the speed of the reference frame
is switched from its original value of —377rad/s to zero and ramped to 377 rad/s.

There are several features worthy of note. The waveform of the instantaneous
electric power is the same in all cases. The electric transient is very evident in
the waveforms of the instantaneous electric power and the currents in the syn-
chronously rotating reference frame (Fig. 2.9-2) and since v_is zero ig, is related to
the power by a constant (v ). In Fig. 2.9-3, we selected 6,,(0) = 0 and 6(0) = 0. The
voltages were applied, and we observed the solution of the differential equations in
the reference frame rotating clockwise at w, (w = — w,). The reference frame speed
was then stepped from —377rad/s to zero whereupon the differential equations
were solved in the stationary reference frame. However, when switching from one
reference frame to another, the variables must be continuous. Therefore, after the
switching occurs, the solution continues using the stationary reference frame dif-
ferential equations with the initial values determined by the instantaneous values
of the variables in the previous reference frame (o = — ®,) at the time of switch-
ing. It is important to note the change in frequency of the variables as the reference
frame speed is ramped from zero to w,. Here, the differential equations being
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Figure 2.9-1 Variables of three-phase stator circuits in the stationary reference frame.
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Figure 2.9-2 Variables of three-phase stator circuits in the synchronously rotating
frame.

solved are continuously changing while the variables remain continuous. When
the reference frame speed reaches synchronous speed, the variables have reached
steady state; therefore, they will be constant corresponding to their values when
o becomes equal to @,. In essence, we have applied a balanced three-phase set of
voltages to a symmetrical rL circuit and in Fig. 2.9-3 we observed the actual vari-
ables from various reference frames by first “jumping” and then “running” from
one reference frame to another.
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Figure 2.9-3 Variables of three-phase stator circuits. First with w = — o, then w =0
followed by a ramp change in reference frame speed to w = ,.
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Problems

2.1 Plot the mmf for the winding distribution shown in Fig. 2P-1. Let
0,,;(0) = —20°, plot mmf;, for a four-pole device.

Figure 2P-1 Uniformly distributed
winding.

Stator

2.2 Justify (2.4-24). What would 1,4, be for a three-phase load shown in
Fig. 2P-2.

2.3 Consider a two-phase stator shown in Fig. 2P-3. Express K, and (K;)™!.

2.4 The two-phase applied stator voltages are
Ve = V, COS @, t
vy = V) sinw,t

where V, #V,,. (a) Express v, and vy in the arbitrary reference frame.
(b) Under what conditions would v,, and v be constants?
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Figure 2P-2 Three-phase RL load.

bs axis Figure 2P-3 Two-phase stator.
) as’ 4 g axis
0
by
. X t as axis
bs' bs
X) as
d axis

2.5 Equation (2.8-1)1is for}":ls. Expressfbs andfcs.

2.6 Verify (2.5-7).

2.7 Suppose i, is defined such that (2.3-3) is a positive maximum at ¢p = =

2
instead of ¢ = —% with i, = 0. Express K and (K,)™.
2.8 Expressfas for Problem 8.
2.9 Express N, for Problem 1.

2.10 Consider the two-phase stator of Problem 3. (a) Express v, and vy, in a form
similar to (2.4-12) and (2.4-13). (b) Repeat (a) assuming the d axis is located
at d) = 2"

2.11 Equation (2.3-5) is for an abc sequence. Use this equation for an ach
sequence and determine v, and vy in the arbitrary reference frame.
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Symmetrical Induction Machine

3.1 Introduction

The induction machine is a major means of converting electric power into
mechanical motion. The single-phase induction motor used in household
applications and the three-phase induction motor used in large-horsepower
applications operate on the same principle. That is, torque is developed by the
rotating magnetic field of the stator inducing currents in short-circuit rotor
windings. It is the first electric machine that we will consider. We will find that
the rotor can be considered a symmetrical system and can be transformed into
an arbitrary reference frame. In fact, the symmetrical induction machine has a
symmetrical stator and a symmetrical rotor.

3.2 Induction Machine

A cutaway view of a four-pole three-phase 6.5-hp 460V squirrel-cage induction
motor is shown in Fig. 3.2-1. It is a severe-duty motor for use in the chemical,
paper, cement, and mining industries. Although it is difficult to discern, the
squirrel-cage rotors are made up of laminated punched steel with aluminum
bars die casted in the openings of the laminated rotor and the bars terminated
at each end of the rotor in an aluminum ring, which is visible in Fig. 3.2-1. The
protrusions from the aluminum rings are for cooling purposes. If we remove
the steel laminations, the remaining aluminum bars and end rings resemble the
rotor (blades) of a “squirrel-cage fan.” The question often arises as to how these
short-circuited bars produce a rotating magnetic field. Intuitively, the rotor has
been considered symmetrical and is shown to be the case in [1].

The two-pole three-phase induction machine shown in Fig. 3.2-2 is the configu-
ration of the machine we will analyze in this chapter. We have already considered
the stator in Chapter 2. The rotor is considered to have three-phase sinusoidally
Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/krause_aem4e
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3 Symmetrical Induction Machine

Figure 3.2-1 Four-pole three-phase 6.5-Hp 460V severe-duty, squirrel-cage induction
motor (Courtesy of General Electric).

distributed windings. In most cases, the rotor is a squirrel cage but in a few cases
the rotor is wound like the stator and the terminals are available by a slip-ring and
brush arrangement. This double-fed induction machine is used in wind energy
applications.

Let us talk about the rotor speed of a P-pole machine for just a minute. The rotor
must have the same number of poles as the stator. Therefore, the rotor displace-
ment for a P-pole machine is

2
Om = 50r (3.2-1)
where 0, is the rotor displacement for a two-pole machine and 6,,, is the actual
rotor displacement for a P-pole machine. Also,

o) ® (3.2-2)

rm = 1_3 r
In Chapter 1, we derived force equations for a translatory system given by (1.5-9)
and (1.5-12). For a P-pole rotational system, those equations become
poW(4.,0,)

T,=-=—_"" 3.2-3
T 727 o, (32:3)

and
T - EBWC(i, 0,)

3.2-4
¢ 2 00 ( )

r
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bs axis
br axis

ar axis

as axis

cs axis

cr axis

Figure 3.2-2 A two-pole three-phase symmetrical induction machine.

where A and i are the phase flux linkages and phase currents, respectively.
Although (3.2-3) or (3.2-4) can be used to determine the torque, we will establish
other means of calculating torque for an electric machine that are more direct.

3.3 Transformation of Rotor Windings to the Arbitrary
Reference Frame

In the case of the induction machine, there are two types of rotors, the wound
rotor windings and the squirrel-cage rotor. The wound rotor windings are similar
to the stator windings with slip rings so that resistors can be inserted during start-
ing of large horsepower machines or to apply a voltage for a double-fed induction
machine in wind turbine applications. The squirrel-cage rotor, which is shown in
Fig. 3.2-1, is by far the most common.

As we have mentioned, it is difficult to see how the squirrel-cage rotor can be
considered for analysis purposes as sinusoidally distributed windings. In order to
justify this, we must recall that the stator windings are sinusoidally distributed.
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ar axis

br axis

as axis

d axis

cr axis

Figure 3.3-1 Elementary two-pole three-phase sinusoidally distributed rotor windings.

With balanced stator currents, we found in Chapter 2 that the rotating magnetic
field is a space sinusoid that rotates at w, about the air gap. This mmf will induce
an mmf in the rotor windings that is similar in form to the stator mmf. Therefore,
since the sinusoidally distributed stator windings with balanced stator currents
caused the sinusoidal rotating mmfs, it follows that in order to arrive at a sinu-
soidal rotor mmf, it must have been caused by balanced rotor currents of w, — w,
frequency flowing in sinusoidally distributed rotor windings. This has long been
the justification for sinusoidal rotor windings. This is shown to be the case in [1].
It is interesting that the rotor can be an empty soda can and it will still rotate.
Regardless of the rotor configuration, it can be approximated as two orthogonal
sinusoidally distributed rotor (q and d axes) windings. The three-phase rotor cir-
cuits are shown in Fig. 3.3-1. We have added the same q and d axes that we used
in the analysis of the stator in Chapter 2. We want to develop the transformation
between the g and d axes and the as, bs, and cs axes.

In Fig. 3.3-1, 0 is the angle between the as axis and the g axis and ¢ is the dis-
placement from the g axis so that 6 + ¢ = 0, + ¢, where 6, is the angle between
the as axis and the ar axis, and ¢, is the displacement from the ar axis. The angle
p is the angle between the ar axis and the g axis.

The rotor mmf may be expressed from Fig. 3.3-1 as

N
mmf, = 7’ i, COS P, + iy, COS (dbr - 2%) + i, COS (qﬁ, + 2%)] (3.3-1)
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Now,
b=p+¢ (3.3-2)
where
p=0-0, (3.3-3)

Substituting (3.3-2) into (3.3-1) yields

mmf, = % [a,cos(ﬂ+¢)+lb,cos (ﬁ+q§— ?> +i,, COS (ﬂ+¢+ —)]

3
(3.3-4)
After some work, (3.3-4) may be written as
mmf, = % cos ¢ [ COS f + iy, cos (ﬁ - —) +1i, cos (ﬁ+ 2?”)]
(3.3-5)

—%sinqﬁ[ Slnﬁ+lbrsm<ﬁ__>+l s1n<ﬁ+%”)]

If we set ¢ = 0 and define i, to be the sum of terms within the first [ ], then pos-
itive iy, will produce a sinusoidally distributed mmf, and the corresponding rotor
flux that is maximum along the q axis, which is located at ¢ = 0 [2, 3]. Likewise, if
we set ¢ = —% and define i;, to be the sum of terms within the second [ ], then pos-
itive iy, will produce a sinusoidally distributed mmf, and the corresponding rotor
flux that is maximum along the d axis, which is located at ¢ = —%. The rotor zero
current is defined as iy, = %(iar + iy, + i.,). Although the transformation for rotor
currents is motivated by (3.3-5), we will use the same transformation for f = v, i,
or A. The transformation for the rotor variables becomes [2, 3]

fqur - Krfabcr (33-6)
where
dOr [fqrfdrfOr (3.3-7)
bcr)T [farfbrfcr (3.3-8)
cos f cos (ﬂ - 2?”) cos <ﬂ+ 2?”)

— z . . ¥4 . T -

Kr_3 51r11ﬁ sm(ﬂ—%) sm(ﬂ+%) (3.3-9)
3 1 1
cos f sin f 1

(K, =|cos (ﬁ - 2?) sin (/’ - —) 1 (3.3-10)

cos<ﬁ+2?"> sin(ﬁ+?> 1
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and

ag _ )
i o(t) — w,(t) (3.3-11)

It is important to note that if we had placed the d axis at ¢ = = and defined i, to
be minus the sum of terms inside the second [ | in (3.3-5), each of the terms in the
second row of K, in (3.3-9) and second column of (K,)™! in (3.3-10) would include
minus signs. In both cases, positive i;, will produce a sinusoidally distributed mmf,
that is maximum along the selected d axis.

Ohm’s and Faraday’s laws give

Vor = Tl + DAy, (3.3-12)
vbr = I’ribr +p/lbr (3.3'13)
Vo = I + DAy, (3.3-14)

If (3.3-12)-(3.3-14) are transformed to the arbitrary reference frame [4], we have

Vgr = Iplgp + (@ — @,) Ay, + Py, (3.3-15)
Vg = gy — (0 = @,) A, + PAg, (3.3-16)
Vor = Fg, + DA, (3.3-17)

The rotor has the gr and the dr windings. Now, from (2.3-8) and (3.3-5) and the

associated definitions of iy, iy, ig,, and iy, we can express mmf; and mmf, as
mmf; = §Ji(i cos ¢ + iy, sin ¢bg) (3.3-18)

s 2 e N ds N .
mmf, = éﬂ(i cos¢, +i,.sing,) (3.3-19)

r 2 o var r dr r .

3.4 \Voltage, Flux-Linkage Equations, and Equivalent
Circuit

A three-phase symmetrical machine is shown in Fig. 3.2-2. Each stator phase has
N equivalent turns; each rotor phase has N, equivalent turns. The flux linkage
equations may be written as

e i el el
aocs = SS Sr .a CS (3'4_1)
|:)"abcr (Lsr)T er Lober



3.4 Voltage, Flux-Linkage Equations, and Equivalent Circuit

The self-inductances are all constant and can be expressed as (2.2-24) for L, and
similarly for L,

1 1
er _ELmr _ELmr
1 1
L, = _ELmr L, _ELmr (3.4-2)
1 1
_ELmr _ELmr er

where L,. =L, +L,,,. Also,
2 2
cos o, cos (9, + ?> cos (0, - ?>
2 2z
L, =L, |cos <6r - ?) cos o, cos <0r + ?> (3.4-3)
2. 2
cos (0, + ?”) cos (9, - f) cosd,

where L, is related to N, N,, and R, as

N,N,
=R,

m

L (3.4-4)

All rotor variables may be referred to the stator windings by the following turn
ratios:

=N 3.4-5
Loper = ]vslabcr (3.4-5)
Ny
aber ﬁvabcr (3.4-6)
r
’ N
)"abcr = ﬁ;"abcr (3.4-7)
r

After substitution into (3.4-1) and some work, the flux linkage equations may
be written as

)\q:bcs — I',‘ss T L%r I:%/abcsil (34'8)
;"abcr (Lsr) er Lober
where, by definition,
N, L
L. =-2L =L (3.4-9)
sr Nr sr Lsr Sr
and
1 1
L;r + Ly _ELms _ELmS
L, =| —3Ln L+ Ly —3Lps (3.4-10)

1 1 !
—3L =L L 4L,

ms 2 ms
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In (3.4-10),

2
L, = (%> L, (3.4-11)
Nr

A change of variables that formulates a transformation of the three-phase vari-
ables of the stationary (stator) circuits to the arbitrary reference frame is given in
Chapter 2 and repeated here for convenience.

fqus K fabcs (34-12)
where
dOs [qu fds fOs (3'4'13)
bcs [fas fbs fcs] (3'4'14)
cosf cos (0 — %”) cos (9 + 2;”)
2
K, = 3|siné sin (0 - %’”) sin (9 + 2;”) (3.4-15)
1 1 1
2 2 2
The time rate-of-change of 6 can be expressed as
d0(t)
t 3.4-16
— = o0 (3.4-16)
The inverse is
cos 6 sin 6 1
(K,)~! = |cos (6 - 2?”) sin (9 - 2?”) 1 (3.4-17)

cos <6+ 2?”) sin <9+ %’”) 1
The s subscript indicates the variables, parameters, and transformation associ-
ated with stationary circuits. Transforming the stator voltage equations yields

Vgs =T qs + WAy +p'1 (3.4-18)
Vgs = Fslgg — @Ags + PAgg (3.4-19)
Vos = Fslos + PAgs (3.4-20)

Applying the transformation of rotor variables given by (3.3-9) to the rotor volt-
age equations yields

Vg = g, + (@0 — @,) Ay + pAg, (3.4-21)

Vv, = 1l = (0= @,) Ay, + pAl, (3.4-22)

Vo, = g, + DAy, (3.4-23)



3.4 Voltage, Flux-Linkage Equations, and Equivalent Circuit

The set of equations is complete once the expressions for the flux linkages are
determined. Substituting the equations of transformation into the flux linkage
equations expressed in abc variables (3.4-8) yields the flux linkage equations for a
magnetically linear system [5].

-1 ' -1 .
o] o [ Kb L] (20
Agaor] K (LL) (K™ K,LLK,) | lgaor
We know from Chapter 2 that for L of the form given by (2.4-15)

L+ Ly, 0 0

KL(K)"=| 0 Lg+Ly 0 (3.4-25)
0 0 L
where
3
Lyss = S Lms (3.4-26)

Since L, is similar in form to Ly, it follows that

L +Ly, O 0

KL (K)*'= 0 L +Ly O (3.4-27)
0 0 L;r
It can be shown that
Ly, 0 0
KL, (K) " =K (L) (K)" =[ 0 Ly 0 (3.4-28)
0 00

In expanded form, the flux-linkage equations become

Ags = Ligigs + Ligg (gs +10,) (3.4-29)
Aas = Liglag + Lygg (s + 1) (3.4-30)
Ags = Liglos (3.4-31)
Aor = Ly, + Ly (s + 10y (3.4-32)
Ay = Ly il + Ly (i + 13, (3.4-33)
My =L 0, (3.4-34)

where L, = %Lms and the g (d) fluxes depend on q (d) currents.
Equations. (3.4-18)-(3.4-23) and (3.4-29)—(3.4-34) suggest the equivalent circuits
shown in Fig. 3.4-1. We can show that other than the voltage equations for the
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ry A ds Ll

S

Vqs LMs V/qr
WAy L % (-,
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Figure 3.4-1 Arbitrary reference frame equivalent circuits for a three-phase symmetrical
machine.

zero-variables and the % factor in L, the voltage equations are the same as those
for a two-phase machine. Moreover, if the three-phase machine is connected in
wye without a neutral connection, as shown in Fig. 3.2-2, the currents i, and i(’)r
are identically zero for balanced or unbalanced operation since the sum of the
three-phase currents is zero. Therefore, vy, and vj, are zero since the sum of the
three-phase stator and rotor flux linkages will be zero for symmetrical systems.
The equivalent circuit is shown in Fig. 3.4-1.

Since machine and power system parameters are nearly always given in ohms,
or percent or per unit of a base impedance, it is convenient to express the voltage
and flux linkage equations In terms of reactances rather than inductances. Hence,
(3.4-18)-(3.4-23) and (3.4-29)-(3.4-34) are often written in terms of X rather than L.

. w P
Vo = Flge + — + — 3.4-35
qs stgs o, Wds o, Yys ( )

. w p
Vas = Tslgs — aTbWQS + w_bwds (3.4-36)

. p
Vos = Flos + —Wos (3.4-37)
Wy
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) 0 — o p
v;r = V;l;r + <a)—br> l]/;r + aTbl[/[;r (34'38)
. 0 —w p
v, =i~ (w_b> vt L, (3.4-39)
v, = b, + Ly (3.4-40)
or — “rtor Yor .
@y

where w, is the base electrical angular velocity used to calculate the inductive
reactances (generally w, = 2760 rad/s in North America or 2750 in Europe and
Asia). Flux linkages (3.4-29)-(3.4-34) now become flux linkages per second with
the units of volts

Wos = Xislgs + Xy (gs + 1) (3.4-41)

Was = Xiglgs + Xy (g5 + 1) (3.4-42)

Wos = Xjslos (3.4-43)

Wor = X i, + Xy (igs + 10 (3.4-44)

Wi, = Xp i, + X (las + 1)) (3.4-45)
! !+

Vor = X, lor (3.4-46)

In the previous equations, the inductive reactances are obtained by multiplying
w,, times inductance. It is left to the reader to modify the equivalent circuits shown
in Fig. 3.4-1 to accommodate the use of reactances rather than inductances in the
voltage equations.

3.5 Torque Expressed in Arbitrary Reference Frame
Variables

In Chapter 1, we used energy balance to obtain expressions for the electromag-
netic torque. We can use those relations to obtain the torque expression for electric
machines; however, once a transformation is used, the power balance relations
can be used to advantage. In the arbitrary reference frame variables with d axis
at ¢ = —g, an expression for the stator electric power input can be established by
substituting (2.4-12)-(2.4-14) into (2.4-26) and rearranging

3 /. . 3 . . 3. . .
quOs = Ers (lés + lis) + E(Adslqs - iqslds)w + E(lqspj’qs + ldspj'ds) + 3vOS10S
(3.5-1)



76 | 3 Symmetrical Induction Machine

Similarly, for the rotor:

3, . 3 . , 3. , ,
quOr = 5}’; (11/12" + liizr) + E (Afirlflr - A‘;”"Zir) (a) - wi‘) + E (ll/li‘pllzlr + l(,irpjiir) + 3v6r16r
(3.5-2)
Now, the power balance equation becomes
aw;

Pelec = Ploss + 7 + Pmech (3‘5'3)

or
aw;

Pelec - 7 - Ploss = Pmech (3'5'4)
which must hold in any reference frame. The power output positive for motor
action is

2
Precn = T 50, (3.5-5)
Now, the term in P4, that is a speed voltage is

3 ; ;

z(’ldslqs — Agslas)® (3.5-6)
In quOr

3 . .

> (A0 der = Agylly,) (@ — ;) (3.5-7)
For w # w,, equating coefficients of w, we have the torque positive for motor action

3P ; ;

=33 (Agrity — Ao.der) (3.5-8)
For o = w,, (3.5-7) is zero, and from (3.5-6), we have the T, positive for motor
action

3P, ., . .

T, = 25 Chaslgs = Agsla) (3.5-9)

Both (3.5-8) and (3.5-9) give the T, positive for motor action as
3P g g
Te3 5L (145 — i0las) (3.5-10)

There is a problem at the end of this chapter where the d axis is assumed to be
located at ¢ = g rather than ¢ = —%.

The relation between torque and speed for a two-pole machine is
dw

dt

where J is the inertia of the rotor and lightly connected load. The units are kg - m?.
The first term on the right-hand side is the inertia torque. The damping coefficient
B,, is generally small and often neglected. The units of B,, are N - m - s/rad. For a
P-pole machine, replace w, with %wr in (3.5-11).

r

T,=J + B, o, + T, (3.5-11)
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3.6 Computer Simulation in the Arbitrary Reference
Frame

The equations convenient for simulating the symmetrical induction machine in
the arbitrary reference frame may be established by first solving the flux linkage
equations for currents. This can be accomplished by defining

g = Lags (igs + 15 (3.6-1)
Ama = Ly (igs + 1) (3.6-2)
From (3.4-29) and (3.6-1), we get
. 1
lgs = L—l(/lqs — Amg) (3.6-3)
S
Similarly,
. 1
lgs = E(/lds - ﬁmd) (3-6'4)
S
. 1
or =77 (Ao = Amg) (3.6-5)
Ir
. 1
Iy = 7 (A = Ama) (3.6-6)
Ir
Substituting (3.6-3) and (3.6-5) into (3.6-1) and solving for Amg
A A
A, =L, =+ = 3.6-7
mq a (L[S L;r ( )
where
1
L (3.6-8)
LTt
1s I Ms
Similarly
Ags | A
Apg =L, [ =+ =- 3.6-9
md a (LLS L;r ( )
From (3.4-18)-(3.4-23) may be rewritten as
Ags = /[vqs — Whgy — Tslgldt (3.6-10)
j’ds = /[vds + (l)ﬂqs - rSidS]dt (3.6‘11)
Ags = /[Vm — rig ldt (3.6-12)

;:/@;4wﬂm%;4mm (3.6-13)
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A:ir = / [v:ir + (@~ wr)/lcl}r - rii;r] dt (3.6-14)

X, = / b, — i | de (3615)

Finally, (3.6-3)-(3.6-15) along with the torque equation (3.5-10) can be expressed
in the form of a time-domain block diagram as shown in Fig. 3.6-1. The voltages
Vgs» Vas» and vy, are obtained from vy, vy, and v, and (2.3-5). The currents iy, iy,
and i, are obtained from i ios and (2.3-7). The torque and rotor speed is given
by (3.5-11).

qs’ Lgs»

3.7 Per Unit System

It is convenient, especially in power systems, to express machine parameters and
variables as per unit quantities. Base power and base voltage are selected and all
parameters and variables are normalized using these base quantities [5]. When
the machine is being considered separately, the base power is generally selected
as the horsepower rating of the machine in volt-amperes (i.e., horsepower times
746). If, on the other hand, the machine is a part of a power system and if it is
desirable to convert the entire system to per unit quantities, then only one power
base (VA base) is selected which would most likely be different from the rating of
any machine in the system. Here we will consider the machine separately with the
rating of the machine taken as base power.

Although we will violate this convention from time to time when dealing
with instantaneous quantities, the rms value of the rated phase voltage is
generally selected as base voltage for the abc variables while the peak value is
generally selected as base voltage for the gqd0 variables. That is, Vg, is the rms

voltage selected as base voltage for the abc variables then Vi 449 = \/EVB(abC). The
base power may be expressed as

Py = 3Vpape) Babe) (3.7-1)
or
3
Py = EVB(qu)IB(qu) (3.7-2)

Therefore, since base voltage and base power are selected, base current can be
calculated from either (3.7-1) or (3.7-2). It follows that the base impedance may be
expressed as

7 = VB(abc)
= ——
IB(abc)

312

_ B(abc) (3_7_3)
PB
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Figure 3.6-1 Time-domain block diagram for induction machine in the arbitrary
reference frame. a = L,/L,, b="1/L,, c=1/L;,d =351,

s> Is? r
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or

Zy= II/B(qu)
B(qdo)

=(3) Viato (3.7-4)
2/ P,

The qd0 equations written in terms of reactances, (3.4-41)—(3.4-46), can be read-
ily converted to per unit by dividing the voltages by Vg4, the currents by I 0,
and the resistances and reactances by Z. Note that since a flux linkage per second
is a volt, it is per unitized by dividing by base voltage.

Although the voltage and flux linkage per second equations do not change form
when per unitized, the torque equation is modified by the per unitizing process.
For this purpose, the base torque may be expressed as

Py

/P,

where w, corresponds to rated or base frequency of the machine (377 rad/s for
60 Hz system). A word of caution is appropriate. If, in (3.7-5), Py is the rated power
output of the machine, then base torque T will not be rated torque. We will find
that, in the case of an induction machine, rated power output generally occurs at
a speed (rated speed) slightly less than synchronous. Hence, T will be less than
rated torque by the ratio of rated speed to synchronous speed.

If the torque expression given by (3.5-8) is divided by (3.7-5), with (3.7-2) substi-
tuted for Py, the multiplier (%) (P/2)(1/w) is eliminated and with all quantities
expressed in per unit the per unit torque becomes

Ty (3.7-5)

T, = y/éri:ir - Wéri:zr (3.7-6)

If the electrical variables are expressed in volts, amperes, and watts, then the

inertia of the rotor is expressed in mks units. If, however, the per unit system

is used, the inertia is expressed in seconds. The inertial torque T for a P-pole
machine may be expressed as

Ty =17 (}%)pwr (3.7-7)

where w, is the electrical angular velocity of the rotor and J is the inertia of the

rotor and connected mechanical load expressed in kg-m?. In order to express

(3.7-7) in per unit, it is divided by base torque and the rotor speed is normalized to
base speed. Thus,

J2/P)w, o,

Y

B )

By definition, the inertia constant expressed in seconds is

i=(3) ()7

(3.7-8)
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2 Jo?
- <1) (%) B (3.7-9)
2/ \pP) P,
Thus, in per unit the torque is related to angular acceleration using
w
T,=2Hp— +T, (3.7-10)
@p
It is important to become familiar with both systems of units and to be able to

convert readily from one to the other. We will use both systems interchangeably
throughout the text.

3.8 Steady-State Equivalent Circuit and Common
Modes of Operation

From (3.4-18), (3.4-19), (3.4-29), and (3.4-30), the voltage equations in the
synchronously rotating reference frame for symmetrical machines may be
written as

Vs = Filgs + @, (Lysig, + Lagdg,) + Lypigs + LygDig, (3.8-1)

Ve, = 1S — 0, (Lsles + Lygsdey) + LyPiG, + Lypily, (3.8-2)

Vi = 1)ig, + (0, — @,) (L, 05 + LyiS, ) + Ly, pice, + Lypic (3.8-3)

Vi =il — (0, — o,) (Ly,ig + Lygl) + L, pily. + Lypis (3.8-4)
Also,

fos =15 =0 (3.8-5)

=1 if% (3.8-6)

The instantaneous phasor voltage equations are obtained by substituting
(3.8-1)—(3.8-4) into (3.8-5) and (3.8-6), thus

~ k3 3
vas = rslas Jwe SS as +]CO LMS ar +pLss as +pLMslar (3‘8_7)

/

ﬁar =l +J(a) -, )er ar +](C() @ )LMS as +err ar +pLMsias (38_8)

For steady-state conditions, the last two terms of (3.8-7) and (3.8-8) become zero

and we obtain the following steady-state voltage equations.

Vo= rd o +jo,Ly + Ly +jo, Lyl (3.8-9)

sTas
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Vi =11, +j(@, — ®,) (L + L) Iy + j(@, — 0Lyl o (3.8-10)
The so-called slip is

w, — W
e r
S =

(3.8-11)

@,

We see that slip increases when w, decreases, also, if we divide (3.8-10) by the
slip, it becomes

v, o .
Sar = gr I:zr +.]we (L;r + LMS) I:zr +JweLMsIas (3'8-12)

Equations. (3.8-9) and (3.8-12) suggest the single-phase equivalent T circuit of a
three-phase symmetrical machine during steady-state balanced operation shown
in Fig. 3.8-1. Note that the inductive reactances are calculated as X = w,L. One
tends to want to calculate the inductive reactances of the rotor circuit as X = (w, —
,)L and (3.8-10) is of the form we would expect; however, we have divided (3.8-10)
by (0, — @,) and multiplied by @, to arrive at (3.8-12). With 7, equal to zero, only
% changes with rotor speed.

We understand that current is not induced in the rotor windings when o, = w,.
Since the rotor windings are generally short circuited (v, and v, are zero) and
from (3.8-11), the slip is zero and g is infinite; hence, the rotor circuit appears to
be open circuited thus correctly portraying synchronous speed “operation”.

Example 3A The parameters for the equivalent circuit shown in Fig. 3.8-1 may
be calculated using electric field theory or determined from tests. The tests gener-
ally performed are a dc test, a no-load test, and a blocked-rotor test. The follow-
ing test data are given for a 5-hp, four-pole, 220V, three-phase, 60 Hz induction
machine where all ac voltages and currents are rms values:

DC test No-load test Blocked-rotor test

V=138V V, =220V V, =235V

jxls jX/lr r—r
s N
- N (L (L 4\, -
Ia‘\' i/

ar ~
Vas ]XMs % Vvar

Figure 3.8-1 Equivalent single-phase circuit for a three-phase symmetrical induction
machine for balanced steady-state operation.
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I,=130A1,=386AI, =129A
P, =200W P,, =469 W
f=60Hzf=15Hz
During the dc test, a dc voltage is applied across two terminals while the machine
is at standstill. Thus,
1 Vdc
s E E
_ 138
T 2x13
The no-load test, which is analogous to the transformer open-circuit test, is per-
formed with balanced three-phase, 60 Hz voltages applied to the stator windings
without mechanical load on the machine (no load). The power input during this
test is the sum of the stator ohmic losses, the core losses due to hysteresis and eddy
current losses, and rotational losses due to friction and windage. The stator ohmic
losses are (I, is a phase current)

=0.531Q (3A-1)

Pp, =30,
=3x%(3.86)> x0.531 = 23.7W (3A-2)
Therefore, the power loss due to friction and windage losses and core losses is
Prye =Py — PIer
=200-23.7=176.3W (3A-3)

In the equivalent circuit shown in Fig. 3.8-1, this loss is neglected. It is generally
small and, in most cases, little error is introduced by neglecting it. It can be taken
into account by placing a resistor in parallel with the magnetizing reactance X
or by applying a small mechanical load (torque) to the shaft of the machine.

It is noted from the no-load test data that the power factor is very small since the
apparent power is (V; is a line-to-line voltage)

ISnll = \/EVnIInl
= 1/3 X220 X% 3.86 = 1470.9 VA (3A-4)

Therefore, the no-load impedance is highly inductive, and its magnitude is
assumed to be the sum of the stator leakage reactance and the magnetizing
reactance since the rotor speed is essentially synchronous whereupon /s is
much larger than X, . Thus

V.

nl

\/EI nl

220

/33386

Xls +XMs =

=329 (3A-5)
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During the blocked-rotor test, which is analogous to the transformer
short-circuit test, the rotor is locked by some external means and balanced
three-phase stator voltages are applied. The frequency of the applied voltage is
often less than rated (15Hz) in order to obtain a representative value of r, since,
during normal operation, the frequency of the rotor currents is low and the rotor
resistances of some induction machines vary considerably with frequency. During
stall, the impedance r; + jX] is much smaller in magnitude than X, whereupon
the current flowing in the magnetizing reactance may be neglected. Hence

Py, =3I (ry+71))

From which
P,
I";, = ?)I_bzl‘ - Is
br
= 469 0.531 = 0.408 Q
3% (12.9)2
The magnitude of the blocked-rotor input impedance is
v,
|Zbr| — br
\/glbr
-2 _ 1050
V3% 12.9
Now
, .15 ,
(ry+717) +igs (X +X])|=1.052Q
From which
15 X 2 2 r, 2
[E (X, + lr)] = (1.052)2 — (r, + )
= (1.052)% — (0.531 + 0.408)?
=0.225Q
Thus

X, =X, =19Q

(3A-6)

(3A-7)

(3A-8)

(3A-9)

(3A-10)

(3A-11)

Generally, X, and Xl’r are assumed equal; however, in some types of induction
machines, a different ratio is suggested. We will assume X, = X| whereupon we
have determined the machine parameters. In particular, for w, = 377 rad/s, the

parameters are

r,=0.531Q X, =31.95Q r.=0.408Q
X, =095Q X =0.95Q

r =
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An expression for the steady-state electromagnetic torque may be obtained by
first writing (3.5-10) in terms of I, I, I'; , and I'y,, and then express I, and T,
using

V2F, = Fi, — jF, (3.8-13)

V2F,, = F, - jF°, (3.8-14)
The expression may be reduced to
P
T,=3 ( - ) LyRe [T5 1] (3.8-15)

where T;S is the conjugate of TGS. The phasor currents may be calculated from the
equivalent circuit given in Fig. 3.8-1.

The balanced steady-state torque versus speed or torque versus slip characteris-
tic of a single-fed induction machine warrants discussion. The majority of induc-
tion machines in use today are single-fed, wherein electric power is transferred to
or from the induction machine through the stator circuits since the rotor windings
are short-circuited. Thus

” JXoss -

T o=— i (3.8-16)
o /s +J(X] + Xy) ®

Substituting (3.8-16) into (3.8-15) yields the following expression for electromag-
netic torque of a single-fed three-phase symmetrical induction machine during
balanced steady-state operation:

_3(P/2) (X5, /,) (17/5) gyl
- 2 2
(r1/5)" + (X, + Xy5)

It is important to note from (3.8-17) that torque is positive (motor action) when
slip is positive which occurs when w, < w, and negative (generator action) when
the slip is negative which occurs when the rotor is being driven above synchronous
speed, w, > w,, and zero when the slip is zero (o, = w,).

With the rotor windings short circuited, the input impedance of the equivalent
circuit shown in Fig. 3.8-1 is

7 = (rsr;/s) + (XI%/[S - SSX}{r) +.j [(V;/S X + rsX;r] (3 8-18)
(ri/s) +iX}, '

(3.8-17)

Now |7as|2 is Ig and

I = (3.8-19)
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Hence, the expression for the steady-state electromagnetic torque for a single-fed
three-phase symmetrical induction machine becomes
3(P/2) @) 15| Vs
T, = (Kias/e) - (3.8-20)
[rorr+s (X2, — XSSX;,)] + (erSS +srX},)

Thus, for a given set of parameters and source frequency w,, the steady-state
torque varies as the square of the magnitude of the applied voltages.

Figure 3.8-2 shows the steady-state torque speed plot of a typical industrial-type
induction motor. Stable operation occurs on the negative slope part of this plot.

In most cases, the load torque is a function of w,, say T; = Kw?2, for example. In
these cases, the machine can develop sufficient starting torque and, if T; and T,
match on the negative slope portion, stable operation will occur. If, on the other
hand, T, is constant and greater than T, at w, = 0, we have at least three choices:
(1) increase the stator voltage; (2) increase the rotor resistance; or (3) use a dif-
ferent machine. Increasing the rotor resistance to increase the starting torque is
something that we have not yet discussed. We will now.

An expression for the slip at maximum torque may be obtained by taking the
derivative of (3.8-20) with respect to slip and setting the result equal to zero. In
particular,

S =1.G (3.8-21)

where s,, is the slip at maximum torque and

r2 + X2
G=x+ LA (3.8-22)

2
(X]%/[s - ss}qr) +r§X;{E

Two values of slip at maximum torque, s,,, are obtained, one for motor action

and one for generator action. It is important to note that G is not a function

TFM
Q
g
=
=
| | 1 | |
10 06 02
20 16 12
g
<
5
=]
5]
@

Figure 3.8-2 Steady-state torque versus speed characteristics of a symmetrical
induction machine.
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of r/; thus, the slip at maximum torque, (3.8-21), is directly proportional to r;.
Consequently, with all other machine parameters constant, the speed at which
maximum steady-state torque occurs may be varied by inserting external rotor
resistance. This feature is sometimes used when starting large motors that have
coil-wound rotor windings with slip rings. In this application, balanced external
rotor resistances are placed across the terminals of the rotor windings so that
maximum torque occurs near the stall. As the machine speeds up, the external
resistors are decreased in value. For unbalanced rotor resistances, see [5]. On the
other hand, some induction machines are designed with high resistance rotor
windings so that maximum torque is produced at or near stall to provide fast
response.

It may at first appear that the magnitude of the maximum torque would be influ-
enced by r.. However, if (3.8-21) is substituted into (3.8-20), the maximum torque
may be expressed as

3(P/2) (X2 G|V 2
(P/2) (X5 /w,) GIV 4| (3.8-23)

I+ 6 (32, - X X + (X + GrXL)’
Equation (3.8-23) is independent of /.. Thus, the maximum torque remains con-
stant if only . is varied; however, the slip at which maximum torque is produced
varies in accordance with (3.8-21). Figure 3.8-3 illustrates the effect of changing
r.. Therein, 1/, > 1, > 1.
In variable-frequency drive systems, the operating speed of the induction
machine is controlled by changing the frequency of the applied voltages by either

Motor

=]

Generator

Figure 3.8-3 Steady-state torque versus speed characteristics of a symmetrical
induction machine for different values of r..
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a converter (solid-state dc-to-ac converter) or a cycloconverter (ac frequency
changer). The phasor voltage equations are applicable regardless of the frequency
of operation. It is only necessary to keep in mind that the reactances given in
the steady-state equivalent circuit, Fig. 3.8-1 are defined as the product of w, and
the inductances. As the frequency is decreased, the time rate-of-change of the
steady-state variables is decreased proportionally. Thus, the inductive reactances
decrease linearly with frequency. If the amplitude of the applied voltages is
maintained at the rated value, the currents will become excessive at the lower
frequencies. To prevent these large currents, the magnitude of the stator voltages
is decreased as the frequency is decreased. In many applications, the voltage
magnitude is reduced linearly with frequency until a low frequency is reached,
whereupon the decrease in voltage is programmed in a manner to compensate for
the effects of the stator resistance.

The influence of frequency upon the steady-state torque versus speed character-
istics is illustrated in Fig. 3.8-4. These characteristics are for a linear relationship
between the magnitude of the applied voltages and frequency. This machine is
designed to operate at w, = w,, where w, corresponds to the rated frequency. Rated
voltage is applied at rated frequency, thatis, when o, = w,, |I~/as| = Vg, where Vg is
the base or rated voltage. Since the reactances (w,L) decrease with frequency, the
voltage is reduced as frequency is reduced to avoid large stator currents. The max-
imum torque is reduced markedly at w,/w;, = 0.1. At this frequency, the voltage

Vg

=10

0.2 0.4 0.6 0.8 1.0

wyp,

Figure 3.8-4 Steady-state torque versus speed characteristics of a symmetrical
induction machine for different operating frequencies.
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would probably be increased somewhat so as to obtain a higher torque. Perhaps
a voltage of, say, 0.15V or 0.2V, would be used rather than 0.1V . Saturation
of the stator or rotor steel may cause the stator currents to be excessive at this
higher voltage. These practical considerations of variable-frequency drives are of
major importance but beyond the scope of the present discussion. However, we
will encounter variable frequency operation later when we deal with field-oriented
control of an induction machine.

3.9 Free-Acceleration Torque Versus Speed
Characteristics

It is instructive to observe the performance of several induction machines during
free acceleration (no-load) from stall. For this purpose, the nonlinear differential
equations that describe the induction machine were simulated on a computer and
studies were performed. The parameters of the machines are given in Table 3.9-1.
Each machine is a four-pole, 60 Hz, three-phase induction motor. The parameters
are expressed in ohms using the 60 Hz value of the reactances. In Table 3.9-1, the
voltage is the rated rms line-to-line voltage, the speed is rated speed, and J includes
the inertia of the load which is assumed to be equal to the inertia of the rotor. Base
torque, as calculated from (3.5-20), and base or rated current (rms) are also given.

The torque versus speed characteristics during free acceleration are shown for
each machine in Figs. 3.9-1-3.9-4. In each case, the machine is initially stalled
when rated balanced voltages are applied with v, = \/EVS cos w,t. The machine
currents along with the electromagnetic torque and speed for the 3- and 2250-hp
machines during free acceleration are shown in Figs. 3.9-5 and 3.9-6. Since friction
and windage losses are not represented, the machines accelerate at synchronous
speed. In all figures, the scales of the currents are given in multiples of rated peak
values. The scale of the torque is given in multiples of base torque.

Table 3.9-1 Induction Machine Parameters.

Machine rating Tg Lg(abey r X Xy X r J
hp volts rpm N-m amps ohms ohms ohms ohms ohms kg-m?
3 220 1710 119 58 0435 0.754 26.13 0.754 0.816 0.089
50 460 1705 198 46.8 0.087 0.302 13.08 0.302 0.228 1.662

500 2300 1773 1.98x10° 93.6 0.262 1206 54.02 1.206 0.187 11.06
2250 2300 1786 8.9x10% 421.2 0.029 0.226 13.04 0.226 0.022 63.87
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118.7

94.96

71.22

474811

T,,N-m

23.74

0 |
900 1800

Speed, r/min

-23.74

Figure 3.9-1 Torque versus speed characteristics during free acceleration—3-hp
induction motor.

At stall, the input impedance of the induction machine is essentially the stator
resistance and leakage reactance in series with the rotor resistance and leakage
reactance. Consequently, with rated voltage applied the starting current is large,
in some cases on the order of 10 times the rated value. Therefore, in practice, a com-
pensator (transformer) is generally used to start large horsepower machines with
reduced voltage until the machine has reached 60%-80% of synchronous speed
whereupon full voltage is applied.

The 3- and 50-hp machines are relatively high-slip machines, that is, rated
torque is developed at a speed considerably less than synchronous speed. On
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Figure 3.9-2 Torque versus speed characteristics during free acceleration—50-hp
induction motor.

the other hand, the 500- and 2250-hp machines are low-slip machines. These
characteristics are evident in the torque versus speed characteristics shown in
Figs. 3.9-1-3.9-4.

The transient torque versus speed characteristics are different from the
steady-state torque versus speed characteristics in several respects. The instanta-
neous electromagnetic torque, immediately following the application of the stator
voltages, varies at 60 Hz about an average positive value. This decaying, 60 Hz
variation in the instantaneous torque is due to the transient offset in the stator
currents. Although the offset in each of the stator currents depends upon the
values of the source voltages at the time of application, the instantaneous torque
is independent of the initial values of balanced source voltages since the machine
is symmetrical. We also note from the current traces in Figs. 3.9-5 and 3.9-6 that
the envelope of the machine currents varies during the transient period. This is
due to the interaction of the stator and rotor electric transients [5].
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Figure 3.9-3 Torque versus speed characteristics during free acceleration—500-hp
induction motor.
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Figure 3.9-4 Torque versus speed characteristics during free acceleration—2250-hp
induction motor.
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Figure 3.9-6 Machine variables during free acceleration of a 2250-hp induction motor.

Another noticeable difference between the dynamic and steady-state torque ver-
sus speed characteristics occurs in the case of the 500- and 2250-hp machines. In
particular, the rotor speed overshoots synchronous speed and the instantaneous
torque and speed demonstrate decayed oscillations about the final operating point.
This characteristic is especially evident in the larger horsepower machines; how-
ever, in the case of the 3- and 50-hp machines, the rotor speed is highly damped
and the final operating condition is attained without oscillations. It is noted from
Table 3.9-1 that the ratio of rotor leakage reactance to rotor resistance is much
higher for the larger horsepower machines than for the smaller. The dynamic
response associated with the rotor circuits is much less damped in the case of the
500- and 2250-hp machines than in the case of the 3- and 50-hp machines.

If we were to plot the steady-state torque versus speed characteristics of the
3- and 50-hp machines upon the free-acceleration torque versus speed charac-
teristics, we would find that the steady-state torque corresponds very closely
to the average of the transient torque. This, however, is not the case for the
500- and 2250-hp machines where the steady-state value of maximum torque
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Figure 3.9-7 Comparison of steady-state and free-acceleration torque versus speed
characteristics—500-hp induction motor.

is much larger than that observed from the free-acceleration characteristics.
This is illustrated in Figs. 3.9-7 and 3.9-8 where the steady-state torque versus
speed characteristic is superimposed upon the free-acceleration characteristic for
the 500- and 2250-hp machines. This difference is due primarily to the electric
transients in the rotor circuits [5].

Example 3B Let us calculate the steady-state torque and current at stall for the
3-hp machine given in Table 3.9-1 and compare these values to those shown in
Figs. 3.9-1 and 3.9-5. From (3.8-20) and Table 3.9-1 withs =1

(3)(4/2)(1)[(26.13)%/377](0.816)(1)(220/ \/5)2

[(0.435)(0.816) + (1)(1)2(26.13% — 26.884 X 26.884)]?
+ (1)%(0.816 X 26.884 + 1 X 0.435 X 26.884)2

=519N-m (3B-1)

T, =

e
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Figure 3.9-8 Comparison of steady-state and free-acceleration torque versus speed
characteristics—2250-hp induction motor.

This is approximately the average of the pulsating torque at w, = 0 depicted in
Figs. 3.9-1 and 3.9-5.
The stall, steady-state current may be calculated from

’T — Vas
() 4 (X + X))
(220//3)/0°
= (0435 + 0.816) +j(0.754 + 0.754)
= 64.8/ — 50.3°A (3B-2)

This value is the steady-state current that would occur if the rotor is locked
and after all electric transients have subsided. It is somewhat difficult to compare
this value with that shown in Fig. 3.9-5 since the electric transients cause
the currents to be offset in Fig. 3.9-5. However, i,; in Fig. 3.9-5 contains the
least offset and it compares quite well. In particular, the rms value of the
first cycle of i, is approximately 69 A, which is in the order of 12 times rated
current.
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3.10 Free-Acceleration Characteristics Viewed from
Various Reference Frames

It is also instructive to observe the variables of an induction machine in various
reference frames during free acceleration from stall. The machine simulated
on the computer, for this purpose, is a single-excited, six-pole, three-phase,
220V (line-to-line), 10-hp, 60 Hz induction motor with the following parameters
expressed in per unit.

r,=0.0453 X, =2042 71l =0.0222
X, = 0.0775 X/ =0.0322

The inertia of the rotor is H = 0.5 s.

The machine variables during free acceleration are shown in Fig. 3.10-1. All
variables are plotted in per unit with the peak value of the base sinusoidal quan-
tities given as 1.0 pu. If we were to follow the convention set forth in Section 3.7,
we would use the rms value as 1.0 pu. However, the selection of peak values as
1.0 pu allows a more direct comparison with the gdOs variables shown later. Also,
base torque rather than rated torque is taken as one per unit torque. At t = 0, rated
voltage, with v, a cosine, is applied to the machine. As in the studies reported
in the previous section, the rotor accelerates from stall with zero load torque
and, since friction and windage losses are not taken into account, the machine
accelerates to synchronous speed.

The same free-acceleration characteristics are shown in different reference
frames in Figs. 3.10-2 through 3.10-4. The stationary reference-frame variables
during free acceleration are shown in Fig. 3.10-2. With the reference frame fixed in
the stator, the gs and ds variables are arithmetically related to the abc variables. In
particular, the zero position of the reference frame is zero; therefore, f,; = fi;. Thus,
Vs and iy, are identical to v, and i, of Fig. 3.10-1. The rotor variables are referred
to the stationary reference frame (fictitious circuits) and vary therein at 60 Hz.

The free-acceleration characteristics with the reference frame fixed in the rotor is
given in Fig. 3.10-3. Here, the zero position of the rotor and the reference frame are
both zero; therefore, f;, = f;;. Hence, ig). in Fig. 3.10-3 is identical to i, of Fig. 3.10-1
and since the stator variables are referred to the fictitious circuit in the rotor and
vary at slip frequency. At stall, the rotor reference frame coincides with the sta-
tionary reference frame. At synchronous speed, the rotor reference frame becomes
the synchronously rotating reference frame. It is important to note that since the
machine essentially operates in the steady-state mode upon reaching synchronous
speed, the variables become constants corresponding to their instantaneous values
at the time the rotor speed becomes equal to synchronous speed.

Free acceleration with the reference frame rotating in synchronism with the
electrical angular velocity of the applied voltages is shown in Fig. 3.10-4. Here,
the zero position of the reference frame is selected so that v is the amplitude of
the stator applied phase voltages and v} = 0.
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Figure 3.10-1 Free-acceleration characteristics of a 10-hp induction motor in machine
variables.



gs

-1.0

5.0
i, 0
-5.0

1.0

s
Y

5.0
o0
-5.0
5.0
-5.0

3.0

2.0

-1.0

w
—< 05
@)

0

—

3.10 Free-Acceleration Characteristics Viewed from Various Reference Frames

— o1

Figure 3.10-2 Free-acceleration characteristics of a 10-hp induction motor in the
stationary reference frame.

99



100 | 3 Symmetrical Induction Machine

l.O—ﬁ

50~ ﬂ
igs. O

50~

i'ss O

— le—o.rs

3.0
20+
T. 1.0

-1.0=

ok

Figure 3.10-3 Free-acceleration characteristics of a 10-hp induction motor in a
reference frame fixed in rotor.



3.10 Free-Acceleration Characteristics Viewed from Various Reference Frames
1.0
vq"s
0
5 [
®0
vis 0+

1.0

— 05

0_
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3.11 Dynamic Performance During Sudden Changes
in Load Torque

The dynamic behavior of the 3- and 2250-hp induction motors during step
changes in load torque is shown in Figs. 3.11-1 and 3.11-2, respectively. Initially,
each machine is operating at synchronous speed. The load torque is first stepped

g
gl
o oA

—> |l«0.1s
. 8.32
iAol N\ —————
-8.32
. 8.32
A N\ T———
-8.32
. 8.32
o NN
-8.32

11.87
T, N-m [I L
0

T, stepped from —T, stepped
zero to 11.87 N-m from 11.87
N-m to zero
1800
Speed, r/min 1710 [

Figure 3.11-1 Dynamic performance of a 3-hp induction motor during step changes in
load torque from zero to 11.87 N-m to zero.
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Figure 3.11-2 Dynamic performance of a 2250-hp induction motor during step changes
in load torque from zero to 8.9 x 10°> N - m to zero.

from zero to base torque (slightly less than rated) and the machine is allowed
to establish this new operating point. Next, the load torque is stepped from base
torque back to zero whereupon the machine reestablishes its original operating
condition.
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Figure 3.11-3 Torque versus

speed for 2250-hp induction

motor during load torque changes
89 shown in Fig. 3.11-2.
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I I
1764 1800
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The variables of the 3-hp machine approach each new operating condition in an
overdamped manner. This is characteristic of the 3- and 50-hp machines given in
Table 3.9-1. We previously found that for these machines the steady-state torque
versus speed characteristic nearly duplicates the free-acceleration characteristic
once the electrical transient associated with the stator circuits has subsided;
therefore, we are not surprised to find that the dynamics during load torque
changes can be predicted adequately by the steady-state torque versus speed
characteristics. Indeed, this is the case; the plot of torque versus speed during the
load torque changes depicted in Fig. 3.11-1 follows nearly exactly the steady-state
torque versus speed curve. Therefore, the dynamic behavior of most smaller
induction machines during normal load torque changes can be predicted by using
the steady-state voltage and torque equations to calculate the currents and torque.

The dynamic performance of the 2250-hp machine during load torque
changes is strongly influenced by the rotor electric transients. The 2250-hp
machine exhibits damped oscillations about the new operating point. At best, the
steady-state torque versus speed characteristics could approximate the average of
this dynamic response; it could not predict the complete dynamics during normal
load torque changes for the larger machines. This fact is further emphasized
by the plot of torque versus speed for the 2250-hp machine in Fig. 3.11-3. The
steady-state torque versus speed characteristic would be nearly a straight line
drawn between the two operating points. We, of course, expected this from the
previous comparison of the steady-state torque versus speed curve with the
free-acceleration characteristics (Fig. 3.9-8).
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Problems

3.1 Consider the symmetrical two-pole, two-phase symmetrical induction
machine shown in Fig. 3P-1. Derive the voltage equations in machine (ab)

variables.

br axis bs axis q axis

Das’ ¢ 0
p ar axis
.
ar’ br
X ¢S Hr
. X as axis
bs’ ) br' bs
ar
X as .
d axis

- Vb +

Figure 3P-1 A two-pole two-phase induction machine.
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3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

Prove that for a three-wire wye-connected stator winding A, + A, + 4., =0.
For this to be true, is it necessary for the rotor windings to also be connected
in a three-wire wye arrangement?

Obtain K and K, for the two-phase induction motor in Fig. 3P-1 assuming

the d axis is located at ¢ = —%. Repeat for ¢p = %
Using the equations of transformation given in Problem 3, derive the volt-
age equations of a two-phase symmetrical induction machine in the arbi-

trary reference frame with d axis at ¢ = —g.

An induction machine has a three-phase stator winding as shown in
Fig. 3.2-2 and a two-phase rotor winding as shown in Fig. 3P-1. Develop
the equivalent circuits for this machine in the arbitrary reference frame.

Derive an expression for electromagnetic torque in arbitrary reference
frame variables for a two-phase machine similar in form to (3.5-10).

Show that the inertia constant H is equivalent to the stored energy of the
rotor at synchronous speed normalized to the base power.

Devise a relationship that can be used to convert a per unit impedance from
one VA base to another.

Per unitize the machine parameters given in Table 3.9-1.

Convert the per unit parameters given for the 10-hp machine in Section
3.10 to ohms and henrys and with the inertia in kg - m?.

Derive (3.8-15). What would this expression be in per unit?

A four-pole, 7.5-hp, three-phase induction motor has the following
parameters:

r,=03Q L, =0035H 7 =015Q
L, =0.0015H L;, = 0.0007 H

The machine is supplied from a 110V line to neutral 60 Hz source. Calcu-
late the steady-state starting torque and current.

A four-pole, three-phrase induction machine is operating with

w, = 377 rad/s, o, = 350 rad/s, I,,=100/150°, L, =L/ =1mH,



3.14

3.15

3.16

3.17

Problems

Ly, =30mH, r, =0.3 Q, and r, = 0.2 Q. Assuming mechanical losses are
negligible, determine T ,, T, , and I

Calculate the speed at maximum torque (motor action) for the 50-hp
machine given in Table 3.9-1 when connected to a source of (a) 120 Hz, (b)
60 Hz, (c) 30 Hz, and (d) 6 Hz.

The 3-hp induction machine given in Table 3.9-1 is operating at no-load.
The sequence of the applied voltages is suddenly changed from abc to acb.
Assume the electrical system establishes steady-state operation before the
speed of the rotor has changed appreciably. Calculate the torque.

Select three identical capacitors so that when they are connected in
parallel with the 500-hp induction machine given in Table 3.9-1, the
capacitor-induction machine combination operates at a 0.95 lagging
power factor at rated power output.

For the time domain block diagram shown in Fig. 3.6-1, verify 4,,; and 4,,,,.
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4

Brushless DC Machine

4.1 Introduction

This chapter is devoted to the analysis of a permanent-magnet ac machine sup-
plied from an ideal inverter. This combination is generally referred to as an ideal
brushless dc drive. The brushless dc drive is the low- to medium-power drive of
choice. The drive is equipped with a means of determining the position of the rotor
(permanent magnet) and the inverter is controlled so that the frequency of the
applied voltages is equal to the electrical rotor speed. Due to the fast-responding
power electronics, the machine essentially operates in synchronism with the
applied voltages. Thus, as the mechanical load and speed changes, so does the
frequency of the applied voltage. Therefore, it operates as a variable-frequency
synchronous machine.

The actual drive is treated in later chapters. Here, we will neglect the harmon-
ics and supply the machine with a three-phase variable (controlled) frequency
sinusoidal source. In particular, if we assume that the stator variables (voltages
and currents) are sinusoidal and balanced with a frequency equal to the electrical
rotor speed, we are able to predict the predominant operating features of all of the
modes of operation without becoming involved with the actual switching or con-
trol of the inverter. Therefore, in this chapter, we will focus on the performance
of the inverter-machine combination assuming that the inverter is designed and
controlled appropriately and leave how this is done to a later chapter.

4.2 \Voltage Equations in Machine Variables

A four-pole three-phase 28V %—hp permanent-magnet ac machine is shown in
Fig. 4.2-1. The dissembled motor is shown in Fig. 4.2-1(a). The stator housing is
shown in Fig. 4.2-1(b) wherein the stator windings are visible. Housed therein are

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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Q. ¢

(a) (b)

Figure 4.2-1 (a) Four-pole three-phase 28-V %-hp permanent-magnet ac machine.
(Courtesy EG and G Rotron). (b) Stator housing including electronics.

the Hall-effect sensors, which are used to determine the rotor position, the drive
inverter, the filter capacitor, and the logic circuitry.

A two-pole permanent-magnet ac machine is depicted in Fig. 4.2-2. It has
three-phase, wye-connected stator windings and a permanent-magnet rotor. The
stator windings are identical windings displaced 120°, each with N, equivalent
turns and resistance r,. For our analysis, we will assume that the stator windings
are sinusoidally distributed. The three sensors shown in Fig. 4.2-2 are Hall-effect
devices. When the north pole is under a sensor, its output is either zero or
nonzero; with a south pole under the sensor, its output is opposite to the north
pole. During steady-state operation, the stator windings are supplied from an
inverter that is switched at a frequency corresponding to the rotor speed. The
states of the three sensors are used to determine the switching logic for the
inverter. In the actual machine, the sensors might not be positioned over the rotor
as shown in Fig. 4.2-1. Instead, they are placed over a ring that is mounted on the
shaft external to the stator windings and magnetized as the rotor. We will return
to these sensors and the role they play later.

As shown in Figs. 4.2-1(a) and 4.2-2, the rotor is cylindrical; however, the rotor is
unsymmetrical and we must analyze the machine in the rotor reference frame. It
is clear that since the rotor is magnetized in one direction, we cannot write trans-
formation equations to a freely rotating q and d axis other than w,. In other words,
the reference frame must be placed where the asymmetry exists. In this case, the
rotor.

Now, although the rotor is cylindrical, the reluctance is not the same along the
q and d axes as in the case of the induction machine. In particular, the permanent
magnets, which are on the d axis, can have higher reluctance than the iron in
the g axis. Therefore, L,,; <L,,,. We find in the next chapter that in the case of
a synchronous machine (constant frequency) that has a salient-pole rotor with a



4.2 Voltage Equations in Machine Variables

Sensor

bs axis
q axis
cs
.
L .
as axis
bs'
Sensor Sensor
cs axis .
d axis
Ips

Figure 4.2-2 Two-pole three-phase permanent-magnet ac machine with sensors.

field winding instead of a permanent magnet L,,, <L, since the air gap is larger
in the g axis. We will see this later.

Now, in the case of the brushless dc machine, the difference in L,,, and L,
is dependent upon the type of permanent magnets being used. We will write the
voltage equations assuming L, > L.

The voltage equations in machine variables are

Vabes = rsiabcs +p)“abcs (42_1)
where

(fabcs)T = [fas fbs fcs] (4.2-2)

The flux linkages may be written as

)”abcs = Lsiabcs + ;“;n (4'2'3)
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where L, may be written as

Ly + L, + Ly c0s 26, —%LA+LBCOSZ(0,—§> —%LA+LBCOSZ<9,+§>
L, = —%LA+LBcosz<0,—’—3’) L,S+LA+LBcosz<9,—2?”> 1L, + Lycos 26, - )

~1L, +Lycos2 (9, + g) ~1L, 4+ Lycos20, + 1) Ly +Ly+Lycos2 (0, + 2?”)
(4.2-4)

where L, is a positive constant and Ly is the amplitude of variation about L, and
Ly<L,.

The flux linkage A, may be expressed as

sin 6,
: 2r
A, = A, |Sin <9r - ;) (4.2-5)
sin <49, + 2?”)

where 4, is the amplitude of the flux linkages established by the permanent mag-
net as viewed from the stator phase windings. When multiplied by rotor speed it
is the back voltage, it does not exist when w, = 0. It is the magnetizing flux link-
age; it does not include the leakage flux linkages of the permanent magnet of the
rotor. That is, pA,, would be the open-circuit voltage induced in each stator phase
winding. We have assumed by (4.2-5) that the voltages induced in the stator wind-
ings by the permanent magnet are constant amplitude sinusoidal voltages. For the
four-pole machine considered in this chapter, 4,, = 0.0827 V/rad. This was deter-
mined by measuring the voltage across two windings as 60V at a rotor speed of
1000 r/mm.

The expression for the electromagnetic torque may be written in machine vari-
ables as
T = (1_3) aWc(iabcs’ 9r)

426
¢~ \2 90, (42:6)

However, we will not use this approach to express the torque. Instead, there is
a more direct approach once the transformation to the arbitrary reference frame
has been made. The torque and speed may be related as

2 2
Te=J<F>pa),+Bm(F>w,+TL (4.2-7)

where J is kg-m?; it is the inertia of the rotor and the connected load. Since we will
be concerned primarily with motor action, the torque T/ is positive for a torque
load. The constant B,, is a damping coefficient associated with the rotational sys-
tem of the machine and the mechanical load. It has the units N-m - s per radian
of mechanical rotation, and it is generally small and often neglected.
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4.3 Voltage and Torque Equations in Rotor Reference
Frame Variables

The voltage equations in the rotor reference frame may be written directly from
(2.4-10) with w = w, [1].

v;dOS = rSi;dOS + wr)"triqs +p)\';d03 (43-1)
where
T
<)\’;qs> = [, =24 0] (4.3-2)
Ly + Ly 0 0 ||igs 0
Modos = 0 Ly+Lyg 0 [|i[+4]1 (4.3-3)
0 0 Lls iOs 0
where
j’;s = (Lls + LMq)iZs (4-3'4)
Ay = (Lyg + Lyl + 2y (4.3-5)
'10s = LlsiOS (4.3-6)

The inductance matrix in (4.3-3) can readily be obtained from Fig. 4.2-2, which
may be expressed as

3
Lyg = 5Ly +Lp) (4.3-7)

3
Lya = 5Ly~ Lp) (4.3-8)

where Ly < L, and Ly is the amplitude of a double angle variation. Also, the first
term is from rotor configuration, and the last term of (4.3-3) comes from KA.
The permanent magnet is in the direct axis. To be consistent with our previous
notation, we have added the superscript r to A},. Now, 4’} is A}, referred to the rotor.
They are the same; however, it does not include the leakage flux of the permanent
magnet rotor. In expanded form, we have

Vi = Il + 0, AL+ pAg (4.3-9)

Vi = Flpg = 0 Agg + DAy (4.3-10)

vOs = rSiOS +pj’0s (4-3'11)
where

A o=L,i" (4.3-12)

qs q-qs
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A= Ll + 2, (4.3-13)

Aos = Lislog (4.3-14)

Here, Ly = Lj;+ Lyg and Ly = Lyg + L.
Substituting (4.3-12)(4.3-14) into (4.3-9)-(4.3-11), and since pA’}, = 0, we can

write
Vs = (g + pLo)igs + @, Lyig, + o, 4", (4.3-15)
Vi, = (ry + L) — o, Lyig (4.3-16)
Vos = (s + PLyy)igs (4.3-17)
If Ly = L, = L, it is useful to define the following time constants:
L
Ty=— (4.3-18)
rS
p
7, = (4.3-19)
Vv,
Lls
7, = & (4.3-20)
rS
Substituting (4.3-18) and (4.3-20) into (4.3-15)-(4.3-17) yields
Vgs = Iy + TP)igg + 11,0, 0 + 2y, (4.3-21)
v:is =1+ Tsp)i;s - rsTswri;s (4.3-22)
Vos = rs(i + Top)iOS (4'3'23)

From Fig. 4.2-2, the sum of phase currents is zero by Kirchoff’s current law.
This means that the zero current is identically equal to zero making (4.3-17) and
(4.3-23) unnecessary.

The expression for electromagnetic torque in terms of substitute variables may
be obtained by substituting the expressions for the machine currents in terms of q
and d currents into (4.2-10). This procedure is quite labor intensive; however, once
we have expressed the voltage equations in terms of reference frame variables, a
more direct approach is possible. In particular, the expression for input power is

3 . . .
P, = > (Vgsl;s + VL + 2000, ) (4.3-24)
Substituting (4.3-9)-(4.3-11) into (4.3-24) gives us
P, = %rs (in+ i +22,)

3 ; ; 3. ; .
+ 3 (Ahgdng — Aoty ) @, + > (ihspAns + 1 DAL + 20D Ag) (4.3-25)



4.3 Voltage and Torque Equations in Rotor Reference Frame Variables

The first term on the right-hand side of (4.3-25) is the ohmic power loss in the
stator windings, the last term is the rate of change of stored magnetic energy. We
realize that the coefficient of w, is the torque. For a P-pole machine

3N (PN (ur o
T.= (E) (5) (Aasles = Agsias) (4.3-26)
Substituting (4.3-12) and (4.3-13) into (4.3-26) yields
3 P roer o oer
Te= (5) (5) [#imlgs + (La = Loigsig] (4.3-27)

The electromagnetic torque is positive for motor action.
The relation between torque and speed for a two-pole machine is

dw,
dt

where J is the inertia of the rotor and tightly connected load. The units are kg - m2.
The first term on the right-hand side is the inertia torque. The damping coefficient
B,, is generally small and often neglected. The units of B,, are N-m - s/rad.

When the machine is supplied with an inverter, it is possible, by controlling the
firing of the inverter, to change the values of v, and v/, . Mathematically, o, is
obtained by integrating (4.3-28). In practice, 6, is determined using Hall effect sen-
sors or a position observer or measured directly using an inline position encoder.
For purposes of discussion, let us assume that the applied stator voltages are sinu-
soidal so that

T,=J—L +B,w,+T, (4.3-28)

Vg = \/Evs cos b, (4.3-29)
Vi = \/Evs cos (06‘) - 2%) (4.3-30)
Vs = \/Evs cos (93‘) + 2;”) (4.3-31)

When the machine is supplied from an inverter, the stator voltages are controlled
such that

0oy =0, + 9, (4.3-32)

With power electronics, the voltages will generally have a waveform with switch-
ing harmonics included. Nevertheless, as a first approximation, (4.3-29)-(4.3-31)
may be considered the fundamental components of these stepped phase voltages.

Transforming (4.3-29)-(4.3-31) to the rotor reference frame yields

Vs = \/Evs cos ¢, (4.3-33)

Vi = —V2v sin ¢, (4.3-34)

where v, is the rms value.
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Figure 4.3-1 Time-domain block diagram of brushless dc motor.

The time-domain block diagram is shown in Fig. 4.3-1. It portrays (4.3-15),
(4.3-16), and (4.3-27). Eq. (4.3-17) is not portrayed since iy is zero. The voltages
Vgs» Vi and vy, are obtained from v, vy, and v, by (2.3-5) with 6 = 6,. The
currents § i’ , and iy, by (2.3-8) with 6 = 0,.

as’

and i, are obtained from i

as? Lbs> qs>

4.4 Instantaneous and Steady-State Phasors

We will derive the instantaneous phasor voltage equations by following the work
in Chapter 2. From (2.8-1) with w = @, and 0, = @,

fas = l;S _Jf;s (4-4'1)
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Substituting (4.3-15) and (4.3-16) into (4.4-1), for balanced steady-state operation

¥

Vi = Vs = Flps + @, A0 + pALe = j (1l — 0,40 + pAl) (4.4-2)

Equation (4.4-2) may be written as
Vas = Tslas + @y (A +J4gs) = JorLoigs + P (Lqlgs +JLals,) (4.4-3)
Now, in the steady state the last term of (4.4-3) is zero and by adding and subtract-

ing w, L1, to (4.4-3) and dividing by \/5 to convert to rms, we have

f/as = (rs +jerq)Tas + E‘a (4-4'4)
where
~ () .
E, = \/’_ [(Ly = LT + Ay €° (4.4-5)
2

Steady-state torque is (4.3-26) with upper case currents.

4.5 Field Orientation of a Brushless DC Drive

In drive applications, the permanent-magnet ac machine is generally supplied
from a voltage source inverter that is controlled to synchronize the frequency
of the stator applied voltages with the electrical angular velocity of the rotor. In
later chapters, we will use an inverter, at this stage we will simulate the inverter
with a variable frequency three-phase sinusoidal source. When the torque load
on the shaft of the machine is increased, the machine slows and the drive inverter
control decreases the frequency of the applied stator voltages, which decreases
the inductive reactance’s (w,L) and Ea. Therefore, the decrease in rotor speed
allows the current to increase which, in turn, increases the strength of the stator
rotating magnetic field to accommodate the increase in torque load. Although the
primary purpose is to control the frequency, the source is also used to orient the
rotating magnetic field of the stator relative to the permanent magnet of the rotor.
This changes the relative position of the stator poles, which changes the torque
characteristics of the machine.

For purposes of establishing the phasor diagram for steady-state operation,
Ea is generally placed at zero degrees and Vas, the fundamental component of
the as-phase voltage, is at the phase angle 6,,,(0). Therefore, in the steady state,
¢, = 0,4,(0). If, for example, ¢, = 0, then the positive peak value of the funda-
mental component of v, and the g axis are rotating in unison. That is, E, and
IN/aS would be at zero degrees if we stopped rotation of the phasors or observed the
phasors each time the q axis is horizontal to the right; i.e., coinciding with the as
axis or if we are running counterclockwise with the g axis we would always see the
peak value of v,. This is the common mode of operation of a brushless dc drive.

In this section, three control strategies are considered with Ly = L, = Lg;
¢, =0, ¢, = dyyrvs and @, = Pypr4. When @, is controlled at ¢y, the
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applied stator voltages are shifted relative to the g axis of the rotor to produce the
maximum torque per volt that is possible at the instantaneous speed of the rotor
(angular frequency of stator voltages). It is found that 6,1, corresponds to the
stator impedance angle which, of course, changes with the frequency of the stator
applied voltages (rotor speed). When ¢, is controlled at ¢, ,, the applied stator
voltages are shifted in phase relative to the g axis to produce the maximum torque
per ampere possible at the instantaneous speed of the rotor. This occurs when Tm,
is in time phase with the g axis or in other words when TGS is orthogonal to the d
axis; thus, the poles of the stator are orthogonal to the permanent magnet.

Before getting further into a discussion of the modes of operation, it is helpful
to talk a little more about ¢, which is expressed as

¢, =0, —0, (4.5-1)

For steady-state operation, 8., = w,t +0,,(0), 0, = w,t+6,(0) and ®, = ,. Thus,
(4.5-1) becomes

&, = 0,4,(0) - 6,(0) (4.5-2)

Also, for brushless dc machine operation, it is convenient to select 6,(0) equal to
zero whereupon

&, = 0,4,(0) (4.5-3)

Therefore, ¢, is the phase of IN/aS and the phase of Ea is zero degrees since it is
controlled to coincide with the q axis.

4.5.1 Brushless dc Motor Operation with ¢, =0

The parameters of the fractional-horsepower four-pole three-phase permanent-
magnet ac machine considered in this section are r; = 3.4 Q, L;,; = 1.1 mH,
Ly =16.5mH, L, =17.6 mH, and 4;, = 0.0827V - s/rad. Here, L, = L; = L, and
the reluctance torque is zero. For brushless dc drive operation, w, is made equal
to w, and ¢, = 0 is the common mode of operation, that is, the as-phase voltage
phasor is controlled to be “in phase” with the g axis. Thus,

V. = V2V, cosm,t (4.5-4)

with a balanced abc sequence and V; = 11.25 V. With sinusoidal applied voltages
and ¢, = 0, the maximum positive value of V, coincides with the g axis and this
unison is fixed by controlling the inverter.

The free-acceleration characteristics (starting from stall with T, = 0) of brush-
less dc drive with ¢, = 0 are shown in Fig 4.5-1. The total inertia J of the rotor and
mechanical load is 5x 107 kg - m?, and the damping coefficient B,, is neglected.
The torque versus the rotor electrical angular velocity for Fig. 4.5-1 is shown in
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Fig. 4.5-2. Here, we see that the steady-state torque resembles that of a dc machine,
thus the name brushless dc machine. The steady-state torque is also plotted in
Fig. 4.5-2 for comparison purposes. The negative slope of the torque versus speed
characteristics ensures stable operation for motor operation. That is, for a given
load torque, a slight slowing of the rotor from an operating point will cause T,
to increase, forcing the rotor back to the operating speed where T, = T,. A small
increase in rotor speed causes T, to decrease whereupon the load torque slows the
rotor back to the original operating point, a stable operating condition. Clearly,
damper windings are not needed.

The voltage equations for a brushless dc motor during balanced steady-state
operation may be obtained by setting V7, the imaginary part of Vas, equal to zero.
Since ¢, = 0, V/, = 0 and solving (4.3-16) (with p set to zero for steady state oper-
ation) for I’ _yields

w,L
I:ls = ; = I;s (4.5-5)
N
Substituting (4.5-5) into (4.3-15) with p set to zero gives
r? + w?l?
Vi = %IQS +w, A, (4.5-6)

N

During steady-state operation, all quantities in (4.5-6) are constants.

There is something that should be mentioned. We have selected the position
of the q and d axes that gives the maximum starting torque. Unfortunately, the
position of the axes is not known, and the starting torque can be zero. Some means
should be implemented to determine the position of the axes. There are various
ways to determine this, which is beyond the scope of this text.

If we choose to work with the abc variables, the phasor voltage equation is
given by

Vas = (rS +.ja)rLss)7as + E‘a (4.5'7)
where
B =Lwi o (4.5-8)
> =
With L, = L,,
3P ,,r.
Te = Ezﬂl:nl;s
3P ,r\/-
= E Eﬂm 2I[6,,(0) — 0,.(0)] (4.5-9)

where 6,(0) = 0.

In summary, the brushless dc drive is so named because the torque versus speed
characteristics resemble those of a dc motor. Therefore, it seems logical that there
is a reference frame where the voltages and currents are dc rather than ac. This is
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Figure 4.5-1 Free-acceleration characteristics of a brushless dc drive with ¢, =0 and a
total inertia of 5x10~* kg-m? (L, = L,).
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very apparent from the traces in Fig. 4.5-1 of v, iy, i , and T,. Since the rotor and
synchronous reference frames are the same, these variables are dc in the steady
state and the steady-state torque versus speed characteristics (Fig. 4.5-2) resemble
those of a dc motor. A phasor diagram for w, = 50z rad/s is given in Fig. 4.5-3.

We see from Fig. 4.5-3 that the rotor poles can be considered being “pulled” in
the counterclockwise direction by the poles created by the stator currents; motor
action.

4.5.2 Maximum-Torque-Per-Volt Operation of a Brushless dc Drive

(¢v = ¢er/v)

Although ¢, = 0 is a common mode of operation of the brushless dc drive,
researchers in [2, 3] discovered that advancing ¢, with respect to the q axis could
increase the torque at high rotor speeds. This was shown analytically in [4] and
illustrated by simulating the phase shifting (increasing ¢,) of the applied voltages
to obtain maximum torque per volt (¢, = ¢,ry/) at a given speed.

If the applied voltages and thus the stator poles are shifted relative to the mag-
netic field established by the permanent-magnet rotor, which is fixed in the d axis,
the torque versus speed characteristics can be changed over a wide range by shift-
ing ¢, from zero to 2z [4]. Here, we will limit our discussion to shifting ¢, for the
purpose of maximizing torque during motor operation.

Torque is proportional to iz, and when ¢, is shifted from zero, v/, is nonzero
as expressed in (4.3-34). For the purpose of deriving an expression for the
maximum torque per volt at a given rotor speed (¢,;y), we will start with

151
Steady-state torque

Free-acceleration torque

1 1 1 J
0 50 100 150 200 250
,, rad/s

Figure 4.5-2 Torque versus speed characteristics for the free acceleration shown in
Fig. 4.5-1 with the steady-state torque shown for comparison purposes.
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Figure 4.5-3 Phasor diagram for brushless dc drive operation at w, = 50z rad/s with
¢, =0.

(4.5-10) and (4.5-11) for Vi, and V7, respectively. In particular, for steady-state

operation
Vig = 1o+ o LIl + 0,4, (4.5-10)
Vi =rlh — oL (4.5-11)

We need the expressions for V¢, and Vi, as functions of ¢,, which are valid for
transient and steady-state operations

Vs = \/EVS cos ¢, (4.5-12)

Vi = —\2V,sing, (4.5-13)

Since 6,(0) = 0, ¢, is the angle of V.
Solving (4.5-11) for I and substituting the result into (4.5-10) yields

2 + w?L? ,L
Vs = ————Igs + — =V o), (4.5-14)
N N

Now, solving (4.5-14) for I;; and substituting (4.5-12) and (4.5-13) for Vg, and
V;S, respectively, with 6,(0) = 0, we have

T, w,L
Iy=5—5 (\/ZVS cos ¢, + —> \/EVS sing, — a)rﬂ’:n> (4.5-15)
rs + wyLg T
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It is interesting to note from (4.5-14) that negative V‘;S aids Vqrs to increase I gs(Te)
for a given rotor speed. Since this results in a negative I , it is often referred to as
field weakening even though 1’} is not decreased in magnitude.

Since T, is proportional to Iy, (4.5-9), we can obtain the maximum torque for a
given rotor speed by taking the derivative of I;; with respect to ¢, and setting the
result equal to zero and then solving for ¢,. Thus, from (4.5-15)

w,L
0=-sing, + — cos ¢, (4.5-16)
rS
whereupon
sin w,L
Ll == (4.5-17)
cos ¢, T
or 1@, L
$ouryv = tan - (4.5-18)

S

Eq. (4.5-18) tells us that for a given positive rotor speed, ¢, Will yield the
maximum possible torque per volt at that rotor speed. The free acceleration and
steady-state torque versus speed characteristics for maximum-torque-per-volt
operation is shown in Fig. 4.5-4. Note the extended speed range with ¢,
(Fig. 4.5-4) compared with ¢, = 0 (Fig. 4.5-2). An increase in torque (Iy;) and
speed range occurs due to a decrease in I’ (a larger negative value). The phasor
diagram for w, = 50 rad/s is shown in Fig. 4.5-5. From Fig. 4.5-5, we see that the
poles created by the stator can be considered “pushing” the rotor poles in the
counterclockwise direction.

150 760
Steady-state torque ¢ ,MT/A

T,

e

¢, deg

1 1 1
0
0 50 100 150 200 250
,, rad/s

Figure 4.5-4 Torque versus speed characteristics for free acceleration with the
steady-state torque versus speed also shown. Compare to Fig. 4.5-2 where ¢, = 0.
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Figure 4.5-5 Phasor diagram for brushless dc drive operation at w, = 50z rad/s with
b, = duuryv-

4.5.3 Maximum-Torque-Per-Ampere Operation of a Brushless dc
Drive (¢, = ¢ymr/a)

Maximum-torque-per-ampere operation occurs when I, (imaginary part of TQS) is
made zero by controlling the position of ’17‘” relative to the permanent magnet of
the rotor (¢, = ¢,,7/4)- The torque is directly related to the g axis current (real part
of T,.). The d axis current does contribute to the torque indirectly but decreases the
efficiency of the machine as we have seen.

To derive an expression for ¢, for steady-state operation, we will substitute
(4.5-12) and (4.5-13) into (4.5-10) and (4.5-11) for Vi and V7, respectively, and
solve for cos¢g, and sing,. If L; = L, and if we set I =0 and perform several
mathematical manipulations, we can express ¢,;,r,4, at a given rotor speed, as [5]

. . -1+ w,rv\/l + it} (1 - wit?) (@5.19)
=tan  |w,t 5-1
VMT/A rs ottt -1

where 7, and 7, are given by (4.3-18) and (4.3-19).

The free acceleration and steady-state torque versus speed characteristics for
maximum-torque-per-ampere operation are shown in Fig. 4.5-6 including a plot
of pprr/a-

The phasor diagram is shown in Fig 4.5-7. Note that the stator and rotor poles
are orthogonal, which yields the maximum torque per ampere for this device at
o, = 50z rad/s. It is interesting that for this machine, i, is small or zero except for
®,nr/v- Therefore, the reluctance torque is small or zero and the torque calculated

using L; = L, would be in error for ¢,y -
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Figure 4.5-6 Torque versus speed characteristics for free acceleration with ¢, = ¢,7s-
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Figure 4.5-7 Phasor diagram for brushless dc drive operation at w, = 50z rad/s with
by = Py
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Problems

4.1 Obtain the last term of (4.3-3).

4.2 Write the voltage equations given by (4.3-15)-(4.3-17) and the torque
equation given by (4.3-27) in terms of flux linkages rather than currents.

4.3 Modify Fig. 4.3-1 to account for unbalanced voltages assuming i, is not
restricted to be zero.

4.4 Repeat Problem 3 with v, ¢, and T as inputs.

4.5 Apermanent-magnet ac machine hasry=0.1Q,L, =Ly, A,01V.s,P=4.
A torque of 3 N-m is desired at a speed of w, = 100 rad/s. Determine the
resulting V..

4.6 The steady-state torque versus speed plots for ¢, = 0 and for ¢, = % intersect.
Calculate the rotor speed where this intersection occurs.

4.7 A three-phase permanent-magnet ac machine is operating with Iz, = 100 A

and I, = —10 A. The load is a fan with T; = 0.1w;. The parameters of the
machineare P=4,r;=0.01Q,L, =L; =1mH, A7, =0.133V - s. Determine
V., and the machine efficiency.
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Synchronous Machines

5.1 Introduction

The electrical and electromechanical behavior of most synchronous machines can
be predicted from the equations that describe the three-phase salient-pole syn-
chronous machine. In particular, these equations can be used directly to predict
the performance of synchronous motors, hydro-, steam-, or wind-turbine-driven
synchronous generators, and, with only slight modifications, reluctance motors.

The rotor of a synchronous machine is equipped with a field winding and one
or more damper windings and, in general, each of the rotor windings has differ-
ent electrical characteristics. Moreover, the rotor of a salient-pole synchronous
machine is magnetically unsymmetrical. Due to these rotor asymmetries, a change
of variables for the rotor variables offers no advantage. However, a change of vari-
ables is beneficial for the stator variables. In most cases, the stator variables are
transformed into a reference frame fixed in the rotor (Park’s equations) [1]; how-
ever, the stator variables may also be expressed in the arbitrary reference frame.

In this chapter, the voltage and electromagnetic torque equations are established
from previous work. The equations that describe the steady-state behavior are
derived using the procedure established in Chapter 2. The machine equations are
arranged in a form convenient for computer simulation. Computer traces are given
to illustrate the dynamic behavior of a synchronous machine during motor and
generator operation.

Most of the electric power used throughout the world is generated by sync-
hronous generators driven either by hydro, steam, or wind turbines, or by com-
bustion engines. Just as the induction motor is the workhorse when it comes to
converting energy from electrical to mechanical, the synchronous machine is the
principal means of converting energy from mechanical to electrical. In the power
system or electric grid environment, the analysis of the synchronous generator

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.
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is often carried out assuming positive currents out of the machine. Although
this is very convenient for the power systems engineer, it tends to be somewhat
confusing for beginning machine analysts and inconvenient for engineers work-
ing in the electric drive area. In an effort to make this chapter helpful in both
environments, positive stator currents are assumed into the machine as done in
the analysis of the induction, brushless dc, permanent-magnet, and synchronous
reluctance machines. The assumed positive direction of the stator currents is
reversed whereupon high-power synchronous generators that would be used in
a power system are considered. The changes in the machine equations necessary
to accommodate positive current out of the machine are described. Computer
traces are then given to illustrate the dynamic behavior of typical hydro- and
steam-turbine-driven generators during sudden changes in input torque and dur-
ing and following a three-phase fault at the terminals. These dynamic responses
are calculated using a detailed set of nonlinear differential equations.

5.2 Windings of a Synchronous Machine

A two-pole, three-phase, wye-connected, salient-pole synchronous machine is
shown in Fig. 5.2-1. The stator windings are identical sinusoidally distributed
windings, displaced from one another by 120°, each with N equivalent turns and
resistance r,. We are familiar with this from Chapter 2. The rotor is equipped
with a field winding and three damper windings. The field winding (fd winding)
has Ny, equivalent turns with resistance ry;. One damper winding has the same
magnetic axis as the field winding. This winding, the kd winding, has N, equiv-
alent turns with resistance r; ;. The magnetic axis of the second and third damper
windings, the kq1 and kq2 windings, is displaced 90° ahead of the magnetic axis of
the fd and kd windings. The kq1 and kq2 windings have N, and N, equivalent
turns, respectively, with resistances kg1 and Tkga

We see from Fig. 5.2-1 that for analysis purposes the stator is the same as in the
induction and permanent-magnet synchronous machines. The rotor has different
single-phase windings. Thus, the rotor is unsymmetrical, and we cannot transfer
these windings to another reference frame. We must use the rotor reference frame
as we did in the case of the permanent-magnet machine.

Now, the rotor shown in Fig. 5.2-1 is referred to as a salient-pole rotor, which
is common for high-power machines with a large number of poles. Lower power
machines may have cylindrical rotors with damper windings similar to the induc-
tion machine with only two damper windings. Although the damper windings
are shown with provisions to apply a voltage, they are, in fact, short-circuited
windings that represent paths for induced rotor currents. Currents may flow
either in cage-type windings similar to the squirrel-cage windings or in the actual
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Figure 5.2-1 Two-pole, three-phase, wye-connected salient-pole synchronous machine.

iron of the rotor. In salient-pole machines, the rotor is composed of laminations
that are electrically insulated from one another and the damper winding currents
are confined, for the most part, to the cage windings embedded in the rotor. In
high-speed two- or four-pole machines, the rotor is cylindrical, made of solid iron
with a field winding. Some may have cage-type winding embedded in rotor slots,
which produces a magnetic field oriented along the q axes. Here, currents can
flow either in the cage winding or in the solid iron. The field winding current
exists to create a magnetic field; the damper winding and induced rotor iron
currents exist only when w, # ,.

129



130

5 Synchronous Machines

The performance of nearly all types of synchronous machines may be ade-
quately described by straightforward modifications of the equations describing
the performance of the machine shown in Fig. 5.2-1. For example, the behavior
of low-speed hydro-turbine generators, which are always salient-pole machines,
is generally predicted sufficiently by one equivalent damper winding in the g
axis. Hence, the performance of this type of machine may be described from the
equations derived for the machine shown in Fig. 5.2-1 by eliminating all terms
involving one of the kq windings. The reluctance machine, which has no field
winding and generally only one damper winding in the g axis, may be described
by eliminating the terms involving the fd winding and one of the kq windings.
Also, it is necessary, in most cases, to include all three damper windings in order
to portray adequately the transient characteristics of the stator variables and the
electromagnetic torque of solid iron rotor machines [2].

5.3 Voltage Equations in Rotor Reference Frame
Variables

R.H. Park was the first to incorporate a change of variables in the analysis of
synchronous machines [1]. He transformed the stator variables to the rotor
reference frame, which eliminates the position-varying inductances in the voltage
equations. Park assumed a positive stator current out of the machine, which
was convenient for generator action. Thus far, we have assumed a positive stator
current into the machine since we have been dealing with motor action. Let us
continue with motor action. The equivalent circuits for positive stator currents
into the machine are shown in Fig. 5.3-1.
From Chapter 2, for the wye-connected stator circuits:

3
Ly=Ly+ 5Ly = Ly) = Ly + Ly (5.3-1)

3
Ly =L+ 5Ly +Ly) = L+ Ly (5.3-2)

Here, L, <L, which is opposite from what we had in Chapter 4 for the
permanent-magnet machine. Also,

, 2N
/— —_—— -
I = 3N, i (5.3-3)
V= =y (5.3-4)
TN ’

N,
y _ Vs
A= f’lj (5.3-5)

J
N, ?

r_ f 34
"= <zﬁj) L (30



5.3 Voltage Equations in Rotor Reference Frame Variables
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Figure 5.3-1 Equivalent circuits of a three-phase synchronous machine with the

reference frame fixed in rotor.
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2
3N,
J

where j may be kql, kq2, fd, or kd. We can write the voltage and flux linkage
equations as

Vs = Tslgs + @, Ay + PAg (5.3-8)
Vo = Fslgs — @, Agg + pAg, (5.3-9)
Vos = Tlos + PAos (5.3-10)
Vigr = Teqa g + Py (53-11)
Viez = Taaligs + PAi (5.3-12)
Vi = Tk + PAg (5.3-13)
Vi = Thaleg + PAg (5.3-14)
where
oo = g+ Ly (G + 100+ 1) (53-15)
Aus = Lyl + Lya (iZ,s +ig + i,’{d) (5.3-16)
Aos = Lislog (5.3-17)
Mgt = Liggr g + Larg (iés +ig, + i;'(r(p) (5.3-18)
}”;crqz = L;qui;c';p + Lygg (igs + i;{rql + i;/:qz> (5.3-19)
My = Lt + Lygg (1, + 8 + 1) (5.3-20)
Mg = Ligatig + Laga (igs + i}é + %) (5.3-21)

Also, Ly, = %(LA —Lp)and L, = %(LA + L) where L, is greater than L. For
cylindrical rotors, Ly = 0. Only the stator variables are expressed in the rotor ref-
erence frame. Rotor voltages, currents, and fluxes are not transformed.

As in the case of the induction machine, it is often convenient to express the
voltage and flux linkage equations in terms of reactances rather than inductances.
This can be done by following a similar procedure given in Section 3.1.



5.5 Time-Domain Block Diagram
5.4 Torque Expressions Positive for Motor Action

Now, we see from the voltage equations (5.3-8)—(5.3-14) that the only terms con-
taining w, are from (5.3-8) and (5.3-9). Therefore, we can write

22 . .
gﬁTewr = (ﬂgslgs - ﬂ;slgs) w, (54_1)
Thus, the torque positive for motor action is
3\ (P , .
T.= (E) (E) (Aastas = Aqsias) (5.4-2)

where the (%) factor is due to the (%) factor in K{ (2.3-6). The (;) factor is the
number of pole pairs. We can also express the torque from (5.4-2) as

3\ (P ; . ar\ ; ; ; ;
T, = (5> (5) [LMd (154 1010 ) o Lt (T + 1y + 10, lgs] (5.4-3)
The torque and rotor speed are related by

2 2
T,= J}—)pwr + Bmﬁwr + T (5.4-4)

5.5 Time-Domain Block Diagram

The equations convenient for simulating the synchronous machine in the rotor
reference frame may be established by first solving the flux linkage equations for
currents. This can be accomplished by defining

Mg = Lagg (igs + i;qu + il’ng) (5.5-1)
A:nd = Lya (igs + l;cti + l}é) (5.5-2)
From (5.3-15), we get
. 1
it = I (Ags = Mmg) (5.5-3)
S
Similarly,
. 1
s = I (A = M) (5.5-4)
S
S 1 /
lkql - L/ </1kq1 - ’lrmq> (55-5)
lkq1
o= L (x A 5.5-6
lqu_Lr kq2 ~ “'mq (5.5-6)
lkq2
. 1
=1 (4= ) (5.57)

Ifd
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i, = L (Ag =27 4) (5.5-8)
lkd

Substituting (5.5-3), (5.5-5), and (5.5-6) into (5.5-1) and solving for 4},

ar /1;(” /l;cr
A =L, (qu + 2 (5.59)
Is leql leqz
where
1
Laq = 1 1 + L + L (5.5-10)
Ly L;kql Ll’qu LM‘?
Similarly
A AT r
d kd fd
A:nd=Lad (L—S+L/—+LT (5.5-11)
Is Ikd Ifd
where
1
L,y T 11 L (5.5-12)
Ly L;kd Ll/fd Ly

Now (5.3-8) and (5.3-9) may be rewritten as

/ [vhs — 0\l — riipg| dt (5.5-13)
= / [Vi, + o hpg — il | dt (5.5-14)
Setting v;;j = vl’:ql = qu = 0in (5.3-11)-(5.3-14), and substituting (5.5-5)-(5.5-8)
for the currents yields
i = / = (g = A ) (5.5-15)
lkql
’ qu
M =/ <,1 - —,1;;]2> (5.5-16)
lkq2
fd
AL = / it g (A= A7) e (5517)
T i
N = / 7 (A —A) de (5.5-18)
Ikd

Finally, (5.5-13)-(5.5-18) along with the torque equation (5.4-2) can be
expressed in the form of a time-domain block diagram as shown in Fig. 5.5-1. The
torque and rotor speed is given by (5.4-4). The voltages vy, and v/ are obtained

from v, vy, and v, using (2.3-5). The currents i, iy, and i , are obtained from
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Figure 5.5-1 Time-domain block diagram for synchronous machines in the rotor
L,,,,,b_Ll C:iﬂ,dzﬁ,ezrﬁ — L p— Laa

i g=-x —ad
- ’ o0 d T T - ’
Ikq2 leqi leqi LU(qZ Llfd L Ls

. r r 1 3 P 1
— — — — —
i=psk=gn =7 ’”“(E)(E)’”‘u'
lkd Ifd Is Ifd

reference frame. a =




136

5 Synchronous Machines
igs and i, using (2.3-7). If the stator windings are connected in delta or wye
with ungrounded neutral, the Os voltages, currents, and flux linkages are all
identically equal to zero. It is left as an exercise for the reader to update the
time-domain block diagram to include the Os variables if the neutral is grounded
and unbalanced operation is to be studied.

5.6 Rotor Angle and Angle Between Rotors

Except for isolated operations, it is convenient for analysis and interpretation pur-
poses to relate the position of the rotor of a synchronous machine to a system
voltage. If the machine is in a system environment, the electrical angular dis-
placement of the rotor relative to its terminal (system) voltage is defined as the
rotor angle. In particular, the rotor angle is the displacement of the rotor generally
referenced to the maximum positive value of the fundamental component of the
terminal (system) voltage of phase a. Therefore, the electrical angle of the rotor
expressed in radians is

5=0,-0, (5.6-1)

The electrical angular speed of the rotor is w,; , is the electrical frequency of
the terminal voltages.

Let us take a minute to talk about an equation from Chapter 4, which dealt
with variable-speed (and frequency) operation of permanent-magnet ac machines.
From (4.3-32), we have ¢, = 0,, — 6, where ¢, is the controlled position of the ter-
minal voltage Tfas, which is constant in the steady state. For analysis purposes,
0,(0) (hence the time-zero position of the g axis) was assumed to be zero. Now,
(5.6-1) is the rotor angle relative to the terminal voltages, which is the negative
of ¢,. In Chapter 4, we caused an angle to occur between V,, and the q axis in
the phasor diagram by moving I7as and holding the g axis at zero. In this chapter,
the frequency of the terminal voltages is assumed fixed, and for analysis purposes,
we will assume 6,,(0) = 0. Thus, from (5.6-1), the time-zero position of 0, is 6,
which like ¢, is constant in the steady state. With this assumption, I~/as is at zero
degrees in the phasor diagram and the q axis is at §. However, it is important to note
that, unlike ¢, in Chapter 4, § is not directly controlled. Its value will be shown in
Section 5.8 as a function of the load or prime mover torque.

The rotor angle 6 is often used as the argument in the transformation between
the rotor and synchronously rotating reference frames since w, is the speed of
the synchronously rotating reference frame and is also the rate-of-change of 4,,.
From (2.5-1)

fr

_ eypr ge
qd0s — K'f

s (5.6-2)
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where
cosé —siné 0
*K"=|[siné cosé 0 (5.6-3)
0 0 1

The rotor angle is often used in relating torque and rotor speed. In particular, if
w, is constant, then (5.4-4) may be written as

T,=7J <%>p26 +B,ps+T, (5.6-4)

where § is expressed in radians.

5.7 Per Unit System

The equations for a synchronous machine may be written in per unit by following
the same procedure as in the case of the induction machine. Base voltage is gener-
ally selected as the rms value of the rated phase voltage for the abc variables and the
peak value for the qd0 variables. However, we will often use the same base value
when comparing abc and qd0 variables. When considering the machine separately,
the power base is selected as its volt-ampere rating. When considering power sys-
tems, a system power base (system base) is selected that is generally different from
the power base of the machine (machine base).

Once the base quantities are established, the corresponding base current
and base impedance may be calculated. Park’s equations written in terms of
flux-linkages-per-second and reactances are readily per unitized by dividing each
term by the peak of the base voltage (or the peak value of the base current times
base impedance). The form of these equations remains unchanged as a result of
per unitizing.

Base torque is the base power divided by the synchronous speed of the rotor.
Thus,

Ty = L
(2/P)wg

( 2 ) V(qdo)Ia(qao)

a (2/P)wy
where g corresponds to rated or base frequency, Py is the base power, Vg ) is the
peak value of the base phase voltage, and I, is the peak value of the base phase
current. In this text, we will use @, and wy which are the same, i.e., 377 rad/s for a
60 Hz system. Dividing the torque equations by (5.7-1) yields the torque expressed
in per unit. For example, (5.4-2) with all quantities expressed in per unit becomes

(5.7-1)

T, = ylir —wiih, (5.7-2)

where ¥ = wgA.
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Eq. (5.4-4), which relates torque and speed, is expressed in per unit with B,,
neglected as
a)r
T,=2Hp— +T, (5.7-3)
Wp
If w, is constant, then this relationship becomes

T, = ﬁpza +T, (5.7-4)
®p

where 6 is the electrical rotor angle in radians. The inertia constant H is in seconds.
It is defined as

i=(3) (3) 7

2 Jw?
:<l> (%) B (5.7-5)
2/ \P/) Py
where J is often the combined inertia of the rotor and prime mover expressed in
kg - m? or given as the quantity WR? in 1b - ft2.

5.8 Analysis of Steady-State Operation

For balanced conditions, the Os quantities are zero and the electrical angular veloc-
ity of the rotor is constant and equal to w,. Therefore, the electrical angular velocity
of the rotor reference frame becomes the electrical angular velocity of the syn-
chronously rotating reference frame. In this mode of operation, the rotor windings
do not experience a change of flux linkages, hence current is not flowing in the
short-circuited damper windings and 4y, and A7 are constant.

For balanced operation, the stator variables may be expressed as

fos = V2f, cos Oof (5.8-1)

fos = V2f, cos (Gef— %ﬂ) (5.8-2)

= V2f, cos <9ef+ 2;”) (5.8-3)
These variables may be expressed in the rotor reference frame as

= V2f, cos(0,r — 0,) (5.8-4)

fi==V2f, sin(0,— 0,) (5.8-5)

If the rotor angle from (5.6-1) is substituted into (5.8-4) and (5.8-5), we obtain

T = V2, 080y — O, — 8) (5.8-6)
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fis= -V, SiN(6yr — 0, — 6) (5.8-7)

The only restriction on (5.8-6) and (5.8-7) is that the stator variables form a bal-
anced set. These equations are valid for transient and steady-state operation, that
is, f, and 6 may both be functions of time. For balanced steady-state conditions,
(5.8-6) and (5.8-7) are constants since f, and the argument to the trigonometric
functions are generally both constants. From (5.8-6) and (5.8-7),

fqrs _.]f;s = \/EfS[COS (eef - eev —90) +jSiI1 (eef - eev —9)]
— \/Efsei(%—gw—fs) (5.8-8)

The position of f/as, ie., 6,,0), is selected to be zero; this is generally deter-
mined by the power system to which it is connected. Thus, in the steady state

_ V2F, 00
N
- \/Epase—j& (5.8-9)

From (5.3-8) and (5.3-9) and since in the steady state w, = w,, we can write

vy = 1l 0, (5.8-10)
Vs = Tslg = @pAgs (5.8-11)

where
/1’ = Llsi;s + LMqi;S
= quqs (5.8-12)

A =Lyl 4 Ly ( ( + 1}3)

Substituting (5.8-12) and (5.8-13) into (5.8-10) and (5.8-11) and using (5.8-9), we
have

V2V e = r V2l e + 0, Lyl + o Lygllh — jo L1, (5.8-14)
Now from (5.8-9)
jVaI, e +jI, (5.8-15)

If we now add and subtract weLqI; to the right-hand side of (5.8-14) and divide
each side by \/2e7

w = (ry + jo L)y + [a)e(Ld ~ LI + oLyl | € (5.8-16)

Sl
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Now, in terms of X rather than w,L, we have

= (1, +JX )Ty + — 7 [(Xd XL+ Xplfy | €° (5.8-17)
We can write (5.8-17) as
Vs = (rg +jX Iy + E, (5.8-18)
where E, is
E, = % [(Xd ~ X+ Xyl | & (5.8-19)

Now, Ea is oriented along the q axis, but where is the g axis? Well, we can make
use of the rotor angle given by (5.6-1). So (5.6-1) may be written with 6,,(0) = 0 as

5 =6,(0) (5.8-20)

We see from Fig. 5.2-1 that 6, is the displacement angle of the g axis. Thus, the last
term of (5.8-18) is at 6 or 6,(0).
Before proceeding, it is noted that for balanced steady-state operation, we can
write the excitation voltage as
E)’C;d XMdIJig (5.8-21)
Although the excitation voltage is sometimes substituted into the above
steady-state voltage equations, it is most often used in the expression for torque.
In particular, if (5.8-19) and the steady-state versions of (5.8-17) and (5.8-18) are
used and if r is neglected the torque may be expressed as

o= () (2) (L) e (3) (- & ) o ans

(5.8-22)
In per unit, (5.8-22) becomes
E" V.
T,=- e SSil’lﬁ—(l) 11 VZsin 26 (5.8-23)
X, 2/ \X, X,

In (5.8-22) and (5.8-23), the rotor angle appears since V, is fixed and the
rotor (g and d axes) moves relative to the applied voltages. In the case of the
permanent-magnet ac machine (Chapter 4), the applied voltages move with
the rotor. Neglecting r, is justified if r, is small relative to the reactances of the
machine. In variable-frequency drive systems, this may not be the case at low
frequencies. With the stator resistance neglected, steady-state power and torque
are related by rotor speed, and if torque and power are expressed in per unit, they
are equal during steady-state operation.
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Although (5.8-22) is valid only for balanced steady-state operation and if
the stator resistance is small relative to the magnetizing reactances (X,,, and
X,q) of the machine, it permits a quantitative description of the nature of the
steady-state electromagnetic torque of a synchronous machine. The first term on
the right-hand side of (5.8-22) is due to the interaction of the magnetic system
produced by the currents flowing in the stator windings and the magnetic system
produced by the current flowing in the field winding. The second term is due to
the saliency of the rotor. This component is commonly referred to as the reluc-
tance torque. The predominant torque is the torque due to the interaction of the
stator and rotor magnetic fields. The amplitude of this component is proportional
to the magnitudes of the stator voltage V., and the voltage applied to the field.
In power systems, it is desirable to maintain the stator voltage near rated. This
is achieved by automatically adjusting the voltage applied to the field winding.
Hence, the amplitude of this torque component varies as E)’C} , 1s varied to maintain
the terminal voltage at or near rated and/or to control reactive power flow. The
reluctance torque component is generally a relatively small part of the total torque.
In power systems where the terminal voltage is maintained nearly constant, the
amplitude of the reluctance torque would also be nearly constant, a function
only of the parameters of the machine and rotor angle. A steady-state reluctance
torque does not exist in round or cylindrical rotor synchronous machines since
X, =Xg. On the other hand, a reluctance machine is a device that is not equipped
with a field winding; hence, the only torque produced is reluctance torque.

Let us return for a moment to the steady-state voltage equation given by
(5.8-17). With 6,,(0) = 0, V lies along the positive real axis of a phasor diagram.
Since § is the angle associated with E, (5.8-19), its position relative to V is also
the position of the g axis of the machine relative to V if ,(0) = 0. Therefore, we
can superimpose the g and d axes of the synchronous machine upon the phasor
diagram.

If T, is assumed zero and if we neglect friction and windage losses along
with the stator resistance, then T, and 6 are also zero and the machine will
theoretically run at synchronous speed without absorbing energy from either the
electrical or mechanical system. Although this mode of operation is not feasible
in practice since the machine will actually absorb some small amount of energy
to satisfy the ohmic, friction, and windage losses, it is convenient for purposes
of explanation. With the machine “floating on the line,” the field voltage can be
adjusted to establish the desired terminal conditions. Three situations may exist:
(V) |E,| = |V 4!, whereupon I, = 0; (2) |E,| > |V |, whereupon I leads V; the
synchronous machine appears as a capacitor supplying reactive power to the sys-
tem; or (3) |E,| < |V 4| with I, lagging V', whereupon the machine is absorbing
reactive power appearing as an inductor to the system. If you plot the amplitude
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of stator current versus field winding current, you will get the well-known V
curve.

To maintain the voltage in a power system at rated value, the synchronous gen-
erators are normally operated in the overexcited mode with |E,| > |V | since they
are the main source of reactive power for the inductive loads throughout the sys-
tem. In the past, some synchronous machines were often placed in the power
system for the sole purpose of supplying reactive power without any provision
to provide real power. During peak load conditions when the system voltage is
depressed, these so-called synchronous condensers were brought online and the
field voltage was adjusted to help increase the system voltage. In this mode of oper-
ation, the synchronous machine behaves like an adjustable capacitor. Although
the synchronous condenser is not used as widely as in the past, it is an instruc-
tive example. On the other hand, it may be necessary for a generator to absorb
reactive power in order to regulate voltage in a high-voltage transmission system
during light load conditions. This mode of operation is, however, not desirable and
should be avoided since machine oscillations become less damped as the reactive
power required is decreased. This is shown in [3].

Example 5A A four-pole, three-phase, salient-pole synchronous machine is
supplied from a 440V (rms) line-to-line, 60 Hz source. The machine is operated
as a motor with a total input power of 4 kW at the terminals. The parameters are

r,=03QLy, =0015H
Ly = 0.001 HL,;, = 0.008 H
Assume the positive direction of current is into the stator terminals.

(a) The excitation is adjusted so that I lags ¥, by 30°. Calculate E, and the reac-
tive power Q.

(b) Repeat (a) with the excitation adjusted so that T is in phase with V.

(c) Repeat (a) with the excitation adjusted so that T leads V', by 30°.

(@) P=3|V]|lIlcos, I, | =90.61A, where ¢ is the angle between V
and I ;.

E, =V = (g +jXI, =216.59 / — 51.28° A (5A-1)

Q = 3|V, ||| sin ¢ = 23.096 kKVAR (5A-2)
() ¢=0,Q=0

[Tl =52.49 A (5A-3)

E, =297.50 / - 36.77° (5A-4)
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(©) |T,5] = 60.61 A

E, =389.10/ - 28.75V (5A-5)
Q = —23.096 kVAR (5A-6)

5.9 Stator Currents Positive out
of Machine—Synchronous Generator Operation

The early power system engineers and analysts chose to assume positive stator cur-
rents out of the synchronous machine perhaps because the main application was
generator action. This notation is still used predominately in power system anal-
ysis and therefore warrants consideration. The synchronous machine is shown
in Fig. 5.9-1 and the equivalent circuits shown in Fig. 5.9-2 depict positive stator
currents out of the machine. It is important to note that the field and damper wind-
ing currents are positive into the machine. It may at first appear that it would be
a huge task to modify the analysis used thus far in this chapter to accommodate
this change in the assumed direction of positive current. We would hope not to be
forced to repeat the entire derivation. Fortunately, we will not have to do this. First,
let us consider the changes necessary in order to make the steady-state equations
compatible with assumed positive stator currents out of the machine.

The steady-state voltage and torque equations for positive stator currents out of

the machine are obtained by simply changing the sign of stator current, I ., or the
substitute variables, I ;S and I "is. From Section 5.8,
vas = —(VS +jXq)Tas + Ea (5.9-1)
- 1 .
B =L [—(Xd ~ X T + Xl & (5.9-2)

C V2

The steady-state torque, positive for generator action, is the negative of (5.8-22)
or (5.8-23).

We realize that this changes the sense of the torque versus angle plot from a
negative sign to a positive sign. Along with this change is the change in the con-
cept of stable operation. In particular, when we assumed positive currents into the
machine, stable operation occurred on the negative slope part of the torque versus
angle plot; now stable operation is on the positive slope portion.

For generator action, the torque and rotor speed relationship is generally
written as

2 2
Te=—J<F>pa)r+Bm<F> T, (5.9-3)

where T, is positive for generator action and T; is the input torque, which is
positive for a torque input to the shaft of the synchronous generator. Torque
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bs axis

cs axis .
d axis

Figure 5.9-1 Two-pole three-phase wye-connected salient-pole synchronous machine
with currents defined positive out of the phase windings.

versus speed relationships expressed in per unit are, neglecting B,,,
w
T,=-2Hp— + T, (5.9-4)
Wp
If w, (wg) is constant, then (5.9-4) may be written as

T,=-2Hps T, (5.9-5)

where H is in seconds and § is in electrical radians. A typical phasor diagram
for generator action with positive stator currents out of the machine is shown in
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Figure 5.9-2 Equivalent circuits of a three-phase synchronous machine with the
reference frame fixed in rotor—Park’s equations with currents defined positive out of the

phase windings.
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q axis

R
S ) \/z Vqs

Figure 5.9-3 Phasor diagram for generator operation with currents defined positive out
of the phase windings.

Fig. 5.9-3. Note that the stator poles change from motor action. It appears that we
are now prepared to consider generator operation compatible with the convention
used in power system analysis.

Example 5B A three-phase, 64-pole, hydro-turbine generator is rated at
325MVA, with 20kV line-to-line voltage and a power factor of 0.85 lagging. The
machine parameters in ohms at 60 Hz are r, = 0.00234 €, Xq = 0.5911 Q, and
X, = 1.0467 Q. For balanced, steady-state rated conditions, calculate (a) Ea,
(b) E)’C}d, and (¢) T,.

The apparent power |S| is

151 = 3V | [Tl (5B-1)
Thus,
ol = =
3|V gl
_ 325 x 10°
 (3x20x10%)//3
=9.37kA (5B-2)

The power factor angle is cos™0.85 = 31. 8. Since current is positive out of
the terminals of the generator, reactive power is delivered by the generator when
the current is lagging the terminal voltage. Thus, I, = 9.37/—31.8° kA. Therefore,
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from (5.9-1), we can obtain the answer to part (a).
E[l = VGS + (rS +JXq)Tas
_20x10°

V3

=15.2/18°kV (5B-3)

/0° + (0.00234 +j0.591) 9.37 x 10> /—31.8°

Hence, § = 18°.
We can solve for E}"; , Dy first substituting (5.8-21) into (5.9-2); however, I’ is
required before E;} , can be evaluated. Thus,
I, = —V/2I;5in[6,,(0) - 6,,(0) — 51
= —\/2|T| sin[-31.8° — 0 — 18°]
= —1/2(9.37 x 10%) sin[~49.8°]
=10.12kA (5B-4)
From (5.9-2) and (5.8-21)
El = V2E, + X, - X I,
= 1/2(15.2 x 10%) + (1.0467 — 0.591)10.12 X 10
=26.1kV (5B-5)

Since r, is small, T, may be calculated by substitution into the negative of (5.7-23)

e (3)(5) ()| B s (3) (1 - ) (VA s
_ (é) (6_4) (L) [(26.1><103)\/§(20>< 103)/\/§Sin18°]

2/\ 2 /\377 1.0467
3 2
+(l>( 1 _ 1 ) \/EZOXlO sin 36°
2/\0.5911  1.0467 V3
=234%x10°N-m (5B-6)

5.9.1 Dynamic Performance during a Sudden Change in Input Torque

It is instructive to observe the dynamic performance of a synchronous machine
during a step change in input torque. For this purpose, the differential equations
that describe the synchronous machine were programmed on a computer and
a study was performed [3]. Two large machines are considered: a low-speed
hydro-turbine generator and a high-speed steam-turbine generator. Information
regarding each machine is given in Tables 5.9-1 and 5.9-2. In the case of the
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Table 5.9-1 Hydro Turbine Generator.

Rating: 325 MVA
Line-to-line voltage: 20 kV
Power factor: 0.85
Poles: 64
Speed: 112.5rev/min
Combined inertia of generator and turbine:
J=351x10°7-s% or WR* =833.1x10°lbm - ft* H=7.5s
Parameters in ohms and per unit:
r, =0.00234 Q, 0.0019 pu
X,, = 0.1478 ©,0.120 pu
Xq =0.5911,0.480pu X, =1.0467 2, 0.850 pu
r’ = 0.00050 €, 0.00041 pu
Xl'fd =0.2523 Q, 0.2049 pu
k , = 0.01675 Q, 0.0136 pu r/ = 0.01736 L, 0.0141 pu

X, =0.1267©,0.1029 pu X;kd =0.1970 ©, 0.160 pu

hydro-turbine generator, parameters are given for only one damper winding in
the g axis.

The computer traces shown in Figs. 5.9-4 and 5.9-5 illustrate the dynamic
behavior of the hydro-turbine generator following a step change in input torque
from zero to 27.6 X 10° N - m (rated torque for unity power factor). The dynamic
behavior of the steam-turbine generator is depicted in Figs. 5.9-6 and 5.9-7. In
this case, the step change in input torque is from zero to 1.11x 10® N-m (50%
rated). In Flgs 5.9-4 and 5.9-5, the following variables are plotted: i, Vi, ig
v i ';S i’ fd, T,, ®,, and 6, where w, is expressed in radians per second and 6 in
degrees. Flgures 5.9-5 and 5.9-7 illustrate the dynamic torque versus rotor-angle
characteristics. In all figures, the scales of the voltages and currents are given in
multiples of peak rated values and w, = 377 rad/s.

In each study, it is assumed that the machine is connected to a bus whose volt-
age and frequency remain constant, at their rated values, regardless of the stator
current. This is commonly referred to as an infinite bus, since its characteristics do
not change regardless of the power supplied or consumed by any device connected
to it. Although an infinite bus cannot be realized in practice, its characteristics are
approached if the power delivery capability of the system, at the point where the
machine is connected, is much larger than the rating of the machine.
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Table 5.9-2 Steam Turbine Generator.

Rating: 835 MVA

Line-to-line voltage: 26 kV

Power factor: 0.85

Poles: 64

Speed: 112.5 r/min

Combined inertia of generator and turbine:
J=0.0658x10°J-s% or WR* =1.56x 10° lbm - ft* H = 5.6 5
Parameters in ohms and per unit:

r, =0.00243 €, 0.003 pu

X, = 0.1538 ©,0.19 pu

X,=1457Q,18pu X, =1457Q,18pu

r,’cq1 = 0.00144 Q,0.00178 pu r;d = 0.00075 €, 0.000929 pu
Xl’kq1 = 0.6578 ©,0.8125 pu ‘Xl/fd =0.11459,0.1414 pu
rl/{q2 = 0.00681 £, 0.00841 pu rf{d = 0.01080 €2,0.01334 pu

X2 =0.076029,0.0939pu X}, = 0.06577 Q,0.08125 pu

Initially, each machine is operating with zero input torque with the exci-
tation held fixed at the value that gives rated open-circuit terminal voltage
at synchronous speed. It is instructive to observe the plots of T,, w,, and ¢
following the step change input torque. In particular, consider the response of
the hydro-turbine generator (Fig. 5.9-4) where the machine is subjected to a step
increase in input torque from zero to 27.6 x 10° N - m. The rotor speed begins to
increase immediately following the step increase in input torque as predicted by
(5.9-5) whereupon the rotor angle increases in accordance with (5.6-1). The rotor
speeds up until the accelerating torque on the rotor is zero. As noted in Fig. 5.9-4,
the electrical speed increases to approximately 380 radians per second at which
time T, is equal to T since the change of w, is zero and hence the inertial torque
(T}7) is zero. Even though the accelerating torque is zero at this time, the rotor is
running above synchronous speed, hence 6, and thus T, will continue to increase.
The increase in T,, which corresponds to an increase in the power output of the
machine, causes the rotor to decelerate toward synchronous speed. However,
when synchronous speed is reached, the magnitude of 6 has become larger than
necessary to satisfy the input torque. Note that at the first synchronous speed
crossing of w, after the change in input torque, 6 is approximately 42 electrical
degrees and T, approximately 47x10° N-m. Hence, the rotor continues to
decelerate below synchronous speed and consequently 6 begins to decrease which

149



150 | 5 Synchronous Machines

13.27
iass KA 0
-13.27

16.32
[

vas, kV

i kA 1327 {/\/\/\—
0

Vas, KV

L 13.27
ldx, kA 0 I:_/\/\/\

26.54 NN —
i kA 1327t
O L
5521
T,,10°N-m 27.6} /\/\/\’
O L.
1.01wp
w,,radls  @p {‘/\/\ﬁ
0.99a,, T stepped from 0 to 27.6 x 10°N-m

40
S, degrees 20 {/\/\N
0

Figure 5.9-4 Dynamic performance of a hydro-turbine generator following a step
increase in input torque from zero to rated.

in turn decreases T,. Damped oscillations of the machine variables continue until
a new steady-state operating point is finally attained.

In the case of the hydro-turbine generator (Fig. 5.9-4), the oscillations in
machine variables subside in a matter of two or three seconds and the machine
establishes the new steady-state operating point within eight to ten seconds. In the
case of the steam-turbine generator (Fig. 5.9-5), the oscillations subside rapidly
but the new steady-state operating point is slowly approached. The damping is,



5.9 Stator Currents Positive out of Machine—Synchronous Generator Operation

552
E
Z
S 276
&~

| | |
0 20 40 60

6, Electrical degrees

Figure 5.9-5 Torque versus rotor-angle characteristics for the study shown in Fig, 5.9-4.

of course, a function of the damper windings and can be determined from an
eigenvalue analysis. The point of interest here is the time required for the machine
variables to reestablish steady-state operation after the torque disturbance. This
rather slow approach to the new steady-state operating point in the case of the
steam-turbine generator is also apparent from the plot of T, versus 6 (Fig. 5.9-7).
Let us consider, for a moment, the expression for steady-state torque,
(5.8-22) (remember to change the sign). For the hydro-turbine generator with

"wo_ 2
Br =2 20kv
T, = (32.5sin 6 + 12.5sin 26) X 10°N-m (5.9-6)
and for the steam-turbine generator with E)’; q = \/g 26 kv

T,=1.23%x10° sin §N-m (5.9-7)
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Figure 5.9-6 Dynamic performance of a steam-turbine generator following a step
increase in input torque.

The steady-state T, versus 6 curves will pass through the final value of the
dynamic T, versus é plots of Figs. 5.9-5 and 5.9-7. However, the dynamic torque
versus angle characteristics immediately following the input torque disturbance
yields a much larger T, for a given value of 5 than does the steady-state character-
istic. In other words, the dynamic or transient torque versus angle characteristic,
which can only be established by solving nonlinear differential equations, is
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Figure 5.9-7 Torque versus rotor-angle characteristics for the study shown in Fig. 5.9-6.

considerably different from the steady-state characteristic and the steady-state T,
versus 6 curve applies only after all transients have subsided [4].

5.9.2 Dynamic Performance during a Three-Phase Fault
at the Machine Terminals

The stability of synchronous machines throughout the power system following a
fault is of major concern. A three-phase fault or short-circuit rarely occurs and a
three-phase fault at the machine terminals is even more uncommon; nevertheless,
it is instructive to observe the dynamic performance of a synchronous machine
during this type of fault.

The computer traces shown in Figs. 5.9-8 and 5.9-9 illustrate the dynamic behav-
ior of the hydro-turbine generator during and following a three-phase fault at the
terminals. The dynamic behavior of the steam-turbine generator as a result of a
three-phase terminal fault is shown in Figs. 5.9-10 and 5.9-11. In Figs. 5.9-8 and
5.9-10, the following variables are plotted: i, v;s, i(’]S, v;s, i"is, i’;d, T,, w,, and 6.
Figures 5.9-9 and 5.9-11 illustrate the dynamic torque versus angle characteristics
during and following the three-phase fault. In each case, the machine is initially

153



154

5 Synchronous Machines
132.7 ¢
lgg KA 0 W
-132.7¢
16.32 -W

Ve kVo 0

-16.32

132.7

i KA 0 —MWW

-132.7 +

16.32

-1632 ¢

BT ——
ihe kA 0

_13271L }“'\3—phase fault

106.16
i kA 53.08{
0

M~

Fault cleared

T .10°N-m 13(8) E——MW
e -138

102(1)b
,, rad/s @y,
0.980,
200
5, degrees 108 E_//X’/x’_

-100

Figure 5.9-8 Dynamic performance of a hydro-turbine generator during and following a
three-phase fault at the terminals.

connected to an infinite bus delivering rated MVA at rated power factor. In the
case of the hydro-turbine generator, the input torque is held constant at (0.85)

27.6 x10° N'm with E', fixed at (1.6)\/§ 20 kV; for the steam-turbine generator
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Figure 5.9-9 Torque versus rotor-angle characteristics for the study shown in Fig. 5.9-8.

T, =(0.85)2.22 x 10 N-m and E}’c } 4 = (248) % 26 kV. (Rated operating conditions
for the hydro-turbine generator are calculated in Example 5B.) With the machines
operating in this steady-state condition, a three-phase terminal fault is simulated
by setting v, v, and v, to zero at the instant v, passes through zero going posi-
tive. The transient offset in the phase currents is reflected into the rotor reference
frame variables and the instantaneous torque as a decaying 60 Hz pulsation. Since
the terminal voltage is zero during the three-phase fault, the machine is unable to
transmit power to the system. Hence, all of the input torque, with the exception of
the ohmic losses, accelerates the rotor.

In the case of the hydro-turbine generator, the fault is removed in 0.466 seconds,
0.362seconds in the case of the steam-turbine generator. If the fault had been
allowed to remain on the system slightly longer, the machines would have become
unstable, that is, they would either not have returned to synchronous speed after
removal of the fault or slipped poles before returning to synchronous speed.

When the fault is cleared, the system voltages are reapplied to the machine; off-
sets again occur in the phase currents giving rise to the decaying 60 Hz oscillations
in the rotor reference frame variables and the instantaneous torque. The dynamic
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Figure 5.9-10 Dynamic performance of a steam-turbine generator during and following
a three-phase fault at the terminals.

torque versus angle characteristics shown in Figs. 5.9-9 and 5.9-11 yield a very
lucid illustration of the fault and switching sequence and the return of the machine
to its original operating condition after the fault is cleared. The torque versus angle
plots of the steam-turbine generator are shown later with the stator electric tran-
sients neglected, which eliminates the 60 Hz pulsating electromagnetic torque and
permits the average torque to be more clearly depicted.
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Figure 5.9-11 Torque versus rotor-angle characteristics for the study shown in
Fig. 5.9-10.

It is perhaps appropriate to mention that this example is somewhat impracti-
cal. In the case of a three-phase fault close to a fully loaded machine, the circuit
breakers would likely remove the machine from the system and reclosing would be
prohibited since the machine would accelerate beyond speed limits before it would
be physically possible to reclose the circuit breakers. A practical situation that is
approximated by the example might be a three-phase fault on a large transmission
line close to the machine terminals. Clearing or “switching out” of this line would
then remove the fault from the system. However, the generator remains connected
to the system through other unfaulted transmission lines.

The expression for the steady-state torque versus angle characteristic for the
hydro-turbine generator is

T, = (52.1sin 6 + 12.55in 25) x 10° N - m (5.9-8)
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For the steam-turbine generator
T,=3.05x10°sin6 N-m (5.9-9)

If these steady-state torque versus angle characteristics are plotted in Figs. 5.9-9
and 5.9-11, respectively, they would pass through only the initial or final
steady-state operating point. As in the case of a sudden change in input torque,
the instantaneous and/or average value of the dynamic or transient torque versus
angle characteristics differ markedly from the steady-state torque versus angle
characteristics.

The approximate torque versus angle characteristics were used to study transient
stability of power systems before the advent of the computer. This method along
with Equal-Area Criterion is covered in [3, 4]. We will not cover these methods
that have long since been replaced by the computer.
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Problems

5.1 A two-pole two-phase, salient-pole synchronous machine is shown in
Fig. 5P-1. In case of a two-phase machine, the magnetizing inductances
are defined as

Lmq =LA_LB
Lyg=L,+Lg

Write the voltage and flux linkage equations in the rotor reference frame.
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Figure 5P-1 Two-pole, two-phase synchronous machine.
5.2 Inthe case of a three-phase synchronous machine, L), and Ly, are defined

with a 3/2 factor. This factor is unity in the case of the two-phase machine.
Why?

5.3 Modify the voltage equations in Problem 1 to describe a two-phase reluc-
tance machine with damper windings.
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5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

Derive the expression for electromagnetic torque in machine variables for
the two-phase synchronous machine shown in Fig. 5P-1.

Determine KL (K,)™! for the machine shown in Fig. 5P-1. Show that 0

ST8S
must equal 6, for the result to be a constant matrix.

Repeat Problem 5 for (L) T(K;)_l.

Express the transformation of stator variables from the arbitrary reference
frame into the rotor reference frame in terms of  and ,..

What are the differences between Park’s stator voltage equations and
(5.3-8)—(5.3-10).

Consider the hydro-turbine generator given in Section 5.9. Select the rated
MVA as the base power. Determine the base voltage, base current, and base
impedance. Check the parameters given in per unit.

Repeat Problem 9 for the steam turbine generator given in Section 5.9.

Modify the steady-state voltage and torque equations for the synchronous
machine given in Section 5.8 for the machine shown in Fig. 5P-1.

A four-pole three-phase salient-pole synchronous machine is supplied
from a 440V (rms) line-to-line, 60 Hz source. The machine is operated as a
motor with a total input power of 40 kW at the terminals. The parameters
are

r,=03Q  Ly;=0015H
Ly =0001H Ly, =0.008H

Assume the positive direction of current is into the stator terminals.

(a) The excitation is adjusted so that I, lags ¥, by 30°. Calculate E, and

the reactive power Q. Draw the phasor diagram.

(b) Repeat a with the excitation adjusted so that I ; is in phase with V.
(c) Repeat a with the excitation adjusted so that I leads V by 30°.

A two-pole, 220V (rms, line-to-line), 5 hp., three-phase reluctance motor
has the following parameters:

r,=1Q Ly, =0.10H
L, =0.005H Ly, =002H



5.14

5.15

5.16

5.17

5.18

Problems

(a) The machine is supplied from 60 Hz, 220 V source with zero load torque.
Calculate 6 and T .
(b) Repeat a with the machine connected to a 6 Hz, 22V source.

The line-to-neutral voltage of phase a at one end of a three-phase trans-
mission line is V,, = V;/6,. At the other end, V,, = V,/6,. The per phase
impedance of the transmission line is X ;- Derive an expression for the
steady-state power flowing over the transmission line in terms of V,, V,,
0,,6,,and X,.

The stator terminals of two synchronous machines are connected in
a phase-to-phase arrangement. Let E,, =E, /8, and E,, =E,/$,.
Derive an expression for the steady-state power flowing between the two
machines in terms of E,,, E,,, 6;, 6,, and the appropriate reactances of
each machine. Neglect the stator resistance of both machines.

Calculate the steady-state I, and & for the hydro-turbine generator for the
final operating condition depicted in Figs. 5.9-4 and 5.9-5.

Repeat Problem 16 for the final operating conditions for the steam-turbine
generator depicted in Figs. 5.9-6 and 5.9-7.

Calculate the initial, prefault values of all variables of the steam-turbine
generator for the condition shown in Fig. 5.9-10.
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Neglecting Electric Transients

6.1 Introduction

In transient stability studies, the stator and network electric transients are
generally neglected. The network is generally simulated in the synchronous
reference frame with the pA terms neglected. This eliminates the need to integrate
for each inductance in the network. Since the synchronous machine must be
simulated in the rotor reference frame, there was a question as to what terms
should be neglected in these equations in order to neglect the electric transients
in the stator when w, # w,. This chapter is devoted to this subject starting with
neglecting stator transients in the arbitrary reference frame. This is the last
chapter that we will deal with power system concerns.

Now in order to do this, we must disregard the rotor circuits since in the case of
the synchronous machine, the rotor circuits are not transformed to any reference
frame other than the rotor. This of course is not the case with an induction
machine where both the stator and rotor circuits may be transformed to the
arbitrary reference frame. Therefore, neglecting stator transients in the stator of
a synchronous machine allows us to neglect the transients associated with the
stator but not the transients associated with the rotor circuit variables.

6.2 Neglecting Stator Electric Transients

The theory of neglecting electric transients is set forth in [1]. To establish this
theory, let us return for a moment to the work in Section 2.4 where the variables
associated with the stator resistance and inductance elements were transformed
to the arbitrary reference frame. It is obvious that the instantaneous voltage
equations for the three-phase resistance are in the same form for either transient
or steady-state conditions. However, it is not obvious that the equations describing
the behavior of a three-phase inductance with the electric transients neglected
Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/krause_aem4e
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(steady-state behavior) may be arranged so that the instantaneous voltages and
currents are related algebraically without the operator d/dt.

First, let us express the voltage equations of a symmetrical stator, which includes
the synchronous and induction machines, in the synchronously rotating reference
frame. From (2.4-12) and (2.4-13) with w = w,.

Vs = Fylgy + @A + PAg (6.2-1)
Vi = Folgy = e Ags + PAG, (6.2-2)

We are not including the unsymmetrical rotor circuits. For balanced steady-state
conditions, the variables in the synchronously rotating reference frame are con-
stants. Hence, we can neglect the electric transients by neglecting the last terms
of (6.2-1) and (6.2-2) that is pAs and pA¢, . Our purpose is to obtain algebraically
related instantaneous voltage equations in the arbitrary reference frame that
may be used to portray the behavior with the stator electric transients neglected
(steady-state behavior). To this end, it is helpful to determine the arbitrary
reference frame equivalent of neglecting pA7; and pA? . This may be accomplished
by noting from (2.5-1) that the synchronous rotating and arbitrary reference
frame variables are related by

fqus = eKS deOS (62-3)

Now from (2.5-7) and since this is valid only for balanced conditions the f,, does
not exist.

e — [CO8@ —sina (6.2-4)
~ [sina cosa ’
and
eg-1 = |[S0S@ sina (6.2-5)
" |—sina cosa )

where a is (0 — 0,). It is recalled that the arbitrary reference frame variables do not
carry a raised index. We understand that the stator is a symmetrical system that
can be expressed in an arbitrary reference frame.

The voltage equations in the arbitrary reference frame may be expressed from
(6.2-3) as

Vados = K Vg (6.2-6)

Since there is no v,,, we have

. - A
Vaas = Kry CK) gy + ‘K (K)o, [_ f]
qs

qds

+ K (K) M hggy + K K phyy (6.2-7)
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Now the third and fourth terms on the right-hand side are due to neglecting

p/lfl ds of the stator that must be set to zero. Thus,

Vs = rsiqs + @, Agg (6.2-8)

Vgg = Fylgy — @phgs (6.2-9)

What have we done? Well, since the stator is assumed to be a symmetrical sys-
tem, the voltage equations in the arbitrary reference frame are

Vv =

gs = Tsigs + @Ags + PAgg (6.2-10)

Vgs = Felgg — @Ags + PAgg (6.2-11)

Now with pA?  —of the stator neglected, the voltage equations in the arbitrary
reference frame are (6.2-8) and (6.2-9). We have replaced the last two terms of
(6.2-10) with w, 44 and the last two terms of (6.2-11) with —WeAgs

For a three-phase coupled circuit with no rotor windings in the arbitrary
reference frame

Ags = Lyl (6.2-12)
Aas = Lagsias (6.2-13)

In summary, the arbitrary reference frame voltage equations have been estab-
lished for inductive circuits with the electric transients neglected, by neglecting
the change of flux linkages in the synchronously rotating reference frame.
However, during unbalanced conditions, such as unbalanced voltages applied
to the symmetrical circuits, the voltages in the synchronously rotating reference
frame will vary with time. For example, 60 Hz unbalanced stator voltages give
rise to a constant and a double-frequency voltage in the synchronously rotating
reference frame. Therefore, the flux linkages in the synchronously rotating
reference frame will also contain a double-frequency component. It follows
that, during unbalanced conditions, neglecting the change in the synchronously
rotating reference frame flux linkages results in neglecting something more
than just the electric transients. Therefore, the voltage equations that have been
derived by neglecting the change in the flux linkages in the synchronously
rotating reference frame apply for balanced or symmetrical conditions such as
simultaneous application of balanced voltages, a change in either load or input
torque, and a three-phase fault. Consequently, the zero quantities are not involved
in the machine equations given in this chapter.

It is interesting that if we neglect pA¢; and pA%_ in (6.2-1) and (6.2-2) and if we
remove the raised “e” on the rest of the terms of (6.2-1) and (6.2-2), we have (6.2-8)
and (6.2-9).
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6.3 Induction Machine with Stator Transients
Neglected

The voltage equations written in the arbitrary reference frame for an induction
machine with the electric transients of the stator voltage equations neglected may
be written from (3.4-18) through (3.4-34) with the zero quantities eliminated and
(6.2-8) and (6.2-9) appropriately taken into account [2].

Vgs = Flgs + WeAgs (6.3-1)
Vas = Fylgs — @pAgs (6.3-2)
Vyr = g, + (0 — @,) Ay + pAy, (6.3-3)
o i _ A’ i/ _
Vg, = iy, — (0 — o) A, + pAy, (6.3-4)
where
Ags = Liglys + Lagg (igs + i) (6.3-5)
Ags = Lygigy + Ly (igs +1,,) (6.3-6)
Agr = Ly, + Ly (igs + 10y (6.3-7)
M =L+ Ly (igs +10,) (6.3-8)

Although the reference frame speed appears in the speed voltages in the rotor
voltage equations, it does not appear in the stator voltage equations.

6.3.1 Free-Acceleration Characteristics

The free-acceleration characteristics predicted for the 3- and 2250-hp induction
motors with the electric transients neglected in the stator voltage equations are
given in Figs. 6.3-1-6.3-4. The parameters and operating conditions are identical
to those used in Chapter 3. A comparison of the torque versus speed characteristics
shown in Figs. 6.3-1 and 6.3-2 with those shown in Figs. 3.9-1 and 3.9-4 reveals that
the only significant difference is in the initial starting transient. Although a tran-
sient occurs in the instantaneous starting torque, it is much less pronounced when
the stator electric transients are neglected. Our first reaction is to assume that the
transient that remains is due to the rotor circuits. Although this is essentially the
case, we must be careful with such an interpretation since we are imposing a con-
dition upon the voltage equations that is difficult to be realized in practice. We are
aware that the stator electric transient gives rise to a 60 Hz pulsating torque. Since



6.3 Induction Machine with Stator Transients Neglected | 167

71.22 =

23.74

1

900

1800
Speed, r/min

Figure 6.3-1 Torque versus speed characteristics during free acceleration predicted with
stator electric transients neglected—3-hp induction motor.
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Figure 6.3-2 Torque versus speed characteristics during free acceleration predicted with
stator electric transients neglected—2200-hp induction motor.
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Figure 6.3-4 Machine variables during free acceleration of a 2250-hp induction
machine predicted with stator electric transients neglected.

we are neglecting the electric transients in the stator voltage equations, we would
expect discrepancies to occur whenever this transient is excited and whenever it
influences the behavior of the machine. In effect, this is what we observe when
comparing Figs. 6.3-1 and 6.3-4 with Figs. 3.9-1 and 3.9-4. Once the stator electric
transient subsides, the torque versus speed characteristics are identical for all prac-
tical purposes. For the machine studied, the speed is not significantly influenced
by the 60 Hz transient torque during free acceleration. If the inertia was relatively
small or if the frequency of the stator voltages was considerably less than rated, as
may occur in variable-speed drive systems, the pulsating electromagnetic torque
could have a significant influence on the behavior of the machine.

The oscillation about synchronous speed, which is determined primarily by the
rotor circuits, is still present as is clearly illustrated in the case of the 2250-hp
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machine (Fig. 6.3-2). This oscillation does not occur when the electric transients
of the rotor circuits are neglected.

Another interesting feature regarding the transient characteristics of the induc-
tion machine is apparent in Figs. 6.3-3 and 6.3-4. The varying envelope of the
machine currents during free acceleration does not occur when the stator electric
transients are neglected. Therefore, we must conclude that the varying current
envelope depicted in Figs. 3.7-5 and 3.7-6 occurs due to the interaction of stator
and rotor electric transients.

A word of explanation regarding Figs. 6.3-3 and 6.3-4 is necessary. Although
this has no influence upon the solution that follows, we can see the ambiguity
that occurs when imposing impossible restrictions upon the behavior of electric
circuits. Here, we see that the stator voltages are algebraically related to all
machine currents since the stator and rotor currents change instantaneously
when the stator voltages are applied in the initial condition mode. It is interesting
that this situation, which is impossible practically, does not give rise to an
initial torque.

6.4 The Synchronous Machine with Stator Transients
Neglected

The stator voltage equations of the synchronous machine written in the arbitrary
reference frame are given by (6.2-1) and (6.2-2). As illustrated by (6.2-8) and
(6.2-9), the electric transients are neglected in the stator voltage equations by
neglecting the derivative of flux linkages in the arbitrary reference frame and
setting @ = w,. Thus, with the electric transients neglected, the stator voltage
equations of the synchronous machine with positive current assumed out of
the terminals of the synchronous machine are of the same form as (6.3-1) and
(6.3-2). It follows that the voltage equations for the synchronous machine in the
rotor reference frame with the stator electric transients neglected are obtained
by neglecting the derivative of the flux linkages in Park’s equations and setting
o, = w,. Thus, with the Os quantities omitted

Vis = Tl + ey (6.4-1)

Vg = —Filye — @pAgg (6.4-2)
) ’

Vgt = rkzllqul +pﬁqul (6.4-3)

N +pl

kg2 — kq2 kq2 (6-4'4)

kq2
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o Il !/

vﬁ; = rﬂ;lf; +p/1f; (6.4-5)

v”’ — r”’ l'/r + A,/r (6 4_6)
kd = Tka'ka T P*ud )

where

Ags = Lislas + Lagg (_itrzs + ilZ]l + i;crqz) (6.4-7)
! . «/, . . o/

K = Ligpbin + Larg (=T + 80 + 85, (6.4-8)
o1 ar " oy oy

)”qu - leqzlqu + LMq <_lqs + lkql + lkq2> (6.4-9)
o _ g/l ;r 7 7 7

A= L + Loga (=10 + i+ i1, (6.4-10)

AT =L+ Ly (—igs +i7+ ijé) (6.4-11)

Also, Ly = 2(Ly — Lg) and Ly = 2(L, + Ly).

The reduced-order model of the synchronous machine obtained by neglecting
the stator electric transients is used widely in the power industry as an analysis
tool. Therefore, it is important to compare the performance of the synchronous
machine predicted by the reduced-order equations with that predicted by the
detailed model (Chapter 5), especially for disturbances common in transient
stability studies.

6.4.1 Three-Phase Fault at Machine Terminals

The dynamic behavior of the hydro-turbine generator during and following a
three-phase fault at the terminals, predicted with the electric transients neglected
in the stator voltage equations, is shown in Figs. 6.4-1 and 6.4-2. The behavior
predicted for the steam-turbine generator is shown in Figs. 6.4-3 and 6.4-4. An
indication of the accuracy of this reduced-order model can be obtained by com-
paring the behavior depicted in these figures to that shown in Figs. 5.9-8-5.9-11.
The machines and operating conditions are identical in both cases. Initially, each
machine is connected to an infinite bus delivering rated MVA at rated power
factor. (Machine data are given in Section 5.9.) In the case of the hydro-turbine
generator, the input torque is held constant at (0.85) 27.6 x 10° N-m with E)’C i

fixed at (1.6) \/g 20 kV; for the steam-turbine generator, T; = (0.85) 2.22 X 10 N-m

and E/ = (2.48)\/526 kV. With the machines operating in this steady-state
condition, a three-phase fault at the terminals is simulated by setting v, v, and
v, to zero at the instant v, passes through zero going positive. The instantaneous
changes in the machine currents and torque at the initiation and removal
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Figure 6.4-1 Dynamic performance of a hydro-turbine generator during a three-phase
fault at the terminals predicted with stator transients neglected.

of the fault demonstrate the algebraic relationship between stator voltages
and machine currents.

With the stator electric transients neglected, the offset transients do not appear
and consequently the 60 Hz pulsating electromagnetic torque is not present
during and following the three-phase fault. The absence of the 60 Hz transient
torque is especially apparent in the torque versus rotor-angle characteristics given
in Figs. 6.4-2 and 6.4-4. These should be compared to Figs. 5.9-9 and 5.9-11.
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Figure 6.4-2 Torque versus rotor-angle characteristics for the study shown in Fig. 6.4-1.

From all outward appearances, it would seem that other than the pulsating
electromagnetic torque there is little difference between the behavior predicted
neglecting stator transients or detailed models. Therefore, one would expect
the model to be sufficiently accurate in predicting this performance during
and following a three-phase fault. There is, however, a difference that occurs
when determining the critical clearing time. The situation portrayed in Figs.
5.9-8-5.9-11 and likewise in Figs. 6.4-1-6.4-4 is one where only a slight increase
in the fault time would cause the machines to become unstable. That is, if the
three-phase fault were allowed to persist slightly longer, the rotor speed would
not return to synchronous after the fault is cleared. Using the detailed model in
Chapter 5, this critical clearing time was determined to be 0.466s for the hydro
unit and 0.362s for the steam unit. For the reduced model, the critical clearing
time for the hydro unit is 0.424 s and 0.334 s for the steam unit. The longer critical
clearing times predicted by the detailed models are due primarily to the pulsating
60 Hz torque that occurs immediately following the occurrence of the fault. The
initial torque pulsation causes the rotor to slow down very slightly, which has
the effect of delaying the increase in the “average” rotor speed. This effect can
be observed in Figs. 5.9-8 and 5.9-10 where the rotor speed remains at o, longer
than in Figs. 6.4-1 and 6.4-3. With the stator electric transients neglected, the
60 Hz pulsating torque is absent and hence the initial “backswing” does not occur
[3]. There are two points that warrant mentioning in defense of this apparent
inaccuracy of the reduced-order model. First, it will typically yield conservative
results. Second, a three-phase fault seldom if ever occurs instantaneously. That
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Figure 6.4-3 Dynamic performance of a steam-turbine generator during a three-phase
fault at the terminals predicted with stator transients neglected.

is, a fault generally starts as a single line-to-ground or as a phase-to-phase fault,
and then it may progress rapidly to a three-phase fault. Hence, the instantaneous
pulsation in electromagnetic torque is generally not sufficient in the practical case
to cause the slowing down of the rotor as depicted in Figs. 5.9-8 and 5.9-10. In this
regard, the effect of the 60 Hz pulsating torque resulting from an instantaneous
three-phase fault is perhaps more of academic than of practical interest.
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Problems

6.1 Express the rotor voltage equations of an induction machine in the arbitrary
reference frame with the stator and rotor electric transients neglected.

6.2 Neglect the electric transients in the stator and rotor of a synchronous
machine. From these voltage equations, derive the familiar steady-state
voltage equation given by (5.8-17).
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6.3

6.4

In the chapter, we have considered only three-phase machines. Explain the
changes that must be made so that this material will apply to (a) two-phase
induction machines and (b) two-phase synchronous machines.

Is it appropriate to neglect stator transients when analyzing an induction
machine with unbalanced stator applied voltages? Why?



7

Machine Equations in Operational Impedances and Time
Constants

7.1 Introduction

In Chapter 5, we assumed that the electrical characteristics of the rotor of a
synchronous machine could be portrayed by two windings in each axis. This type
of a representation is sufficient for most applications; however, there are instances
where a more refined model may be necessary. For example, when representing
solid iron rotor machines, it may be necessary to use three or more rotor windings
in each axis so that transient dynamics are accurately represented. This may
also be required to accurately capture switching dynamics when modeling
machine/rectifier systems.

R. H. Park [1], in his original paper, did not specify the number of rotor
circuits. Instead, he expressed the stator flux linkages in terms of operational
impedances and a transfer function relating stator flux linkages to field voltage.
In other words, Park recognized that, in general, the rotor of a synchronous
machine appears as a distributed parameter system when viewed from the stator.
The fact that an accurate, equivalent lumped parameter circuit representation
of the rotor of a synchronous machine might require two, three, or four damper
windings was more or less of academic interest until digital computers became
available. Prior to the 1970s, the damper windings were seldom considered in
stability studies; however, as the capability of computers increased, it became
desirable to represent the machine in more detail.

The standard short-circuit test, which involves monitoring the stator
short-circuit currents, provides information from which the parameters of
the field winding and one damper winding in the d-axis can be determined.
The parameters for the g-axis damper winding are calculated from design data.
Due to the need for more accurate parameters, frequency-response data are now
being used as means of measuring the operational impedances from which the
parameters can be obtained for any number of rotor windings in both axes.

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.
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7 Machine Equations in Operational Impedances and Time Constants

In this chapter, the operational impedances as set forth by Park [1] are described.
The standard and derived synchronous machine time constants are defined and
their relationship to the operational impedances established. Finally, a method of
approximating the measured operational impedances by lumped parameter rotor
circuits is presented. It is important to note that, for notational convenience, the
magnetizing reactances will be denoted in this chapter as X,,, and X,,, for both
two- and three-phase synchronous machines.

7.2 Park’s Equations in Operational form

R.H. Park [1] published the original gd0-voltage equations in the form

roo_ . W, r p r
Vgs = —Tlgs + aqu/dS + w—bu/qs (7.2-1)
. v p
Vo= —rih — w—bu/‘;s + w—bqus (7.2-2)
. p
Vos = —Flos + — W (7.2-3)
Wy
where
W;s = _Xq(p)l;s (72'4)
Wi = =Xl + GOV y (7.2-5)
Yos = _XlsiOS (7.2-6)

In these equations, positive stator current is assumed out of the machine,
the operator X (p) is referred to as the g-axis operational impedance, X,(p)
is the d-axis operational impedance, and G(p) is a dimensionless transfer function
relating stator flux linkages per second to field voltage.

With the equations written in this form, the rotor of a synchronous machine
can be considered as either a distributed or lumped parameter system. Over the
years, the electrical characteristics of the rotor have often been approximated by
three lumped parameter circuits, one field winding and two damper windings,
one in each axis. Although this type of representation is generally adequate for
salient-pole machines, it does not suffice for a solid iron rotor machine. It now
appears that for dynamic and transient stability considerations, at least two
and perhaps three damper windings should be used in the g-axis for solid rotor
machines with a field and two damper windings in the d-axis [2].

7.3 Operational Impedances and G(P) for a
Synchronous Machine with Four Rotor Windings

In Chapter 5, the synchronous machine was represented with a field winding
and one damper winding in the d-axis and with two damper windings in
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Figure 7.3-1 Equivalent circuit with two damper windings in the quadrature axis.

the g-axis. It is helpful to determine X (p), X,(p), and G(p) for this type of
rotor representation before deriving the lumped parameter approximations
from measured frequency-response data. For this purpose, it is convenient to
consider the network shown in Figure 7.3-1. It is helpful in this and in the
following derivations to express the input impedance of the rotor circuits in
the form

1+ Tan)(l + Tqu)
(1 + 70,9)

Z,(s) =R, (7.3-1)

Since it is customary to use the Laplace operator s rather than the operator p,
Laplace notation will be employed hereafter. In (7.3-1)

/ /
ror
kql' kq2
=T (7.3-2)
v+
kql kq2

X/
= ”‘31 (7.3-3)
a)brkq1

Xl
lkq2
Ty =—7p (7.3-4)
OpTy

’ ’
_ Xlkql +Xlkq2

TQa h / /
wy, (rkql + rkq2>

T Tab
= eq( £ 41 ) (7.3-5)
rkq2 rkql
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From Figure 7.3-1
S X Ky /0245
wy, oy Zgy(S) + (sX,q/ @)
Solving the above equation for X (s) yields the operational impedance for two
damper windings in the g-axis, which can be expressed

(7.3-6)

1+ (Tga + 745)8 + 744 qﬁs

X, (5) = (7.3-7)
‘11+(r + T)S + T4y Tgs8?
where
T = ( kgt T ) (7.3-8)
_ '
Tq2 _wbr;cqz (Xlk ) (7.3-9)
X, X'
1 mq“ kg1
to=— Xt 5 (7.3-10)
Dplign lkql + Xing
X
1 Is
= —— (Xlkql T ) (7.3-11)
wypF, kql s T
1 XingXis
7= (7.3-12)
7 o kq < kg2 T X, + )
XXX
1 IsIkq1
Tg6 = T <Xl’kq2 Y X X X tXX > (7.3-13)
OpFiga mgXis + XingXpegr + XisXpen

The d-axis operational impedance X ,(s) may be calculated for the machine
with a field and a damper winding by the same procedure. In particular, from
Figure 7.3-2a

(I + 74,81 + 7455)

Z,(8) = 7.3-14
ar(S) A + 7p,S) ( )
where
r/ r/
Ry= -2 (7.3-15)
+ r
fd
X!
Ifd
T = — (7.3-16)
(N T
X/
Ty = —d (7.3-17)
Cl)brkd
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! !
led + X

Tpa , ,
oy (1 +71y)

T T
=Ry, <r;ﬂ + %) (7.3-18)
kd fd

The operational impedance for a field and damper winding in the d-axis can be
obtained by setting v’}d to zero and following the same procedure, as in the case of
the g-axis. The final expression is

1+ (Tgq + T45)S + TgaTyeS?
1+ (T + T0)8 + Ty T8>

X,(5) =X, (7.3-19)
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where
1
Tar = =7 (‘)(l/fd +de) (7.3-20)
b fd
1
Ty = — (Xjg + Xa) (7.3-21)
wpry,
X, X
T4z = 1/ Xia + M (7.3-22)
DT Xy + Xma
X X
Ty = — (X,}d + M) (7.3-23)
wbrfd Xls +de
X X
Ty = —5; X+ b (7.3-24)
a)brkd XLS‘ + de
Xna XX,
= ——(x1+ Skl LN (7.3-25)
Wy rkd de‘Xls + deX[fd + XlsX[fd

The transfer function G(s) may be evaluated by expressing the relationship
between stator flux linkages per second to field voltage, v/ ;d, with i(’is equal to zero.
Hence, from (7.2-25)

wr
Gis) = —= (7.3-26)
Vi i" =0
From Figure 7.3-2b, this yields
X 1+ 17,8
Gs) = db . (7.3-27)
" 1+ (741 + 745)8 + T4y 7458

where 74, is defined by (7.3-17).

7.4 Standard Synchronous Machine Reactances

It is instructive to set forth the commonly used reactances for the four-winding
rotor synchronous machine and to relate these reactances to the operational
impedances whenever appropriate. The g- and d-axis reactances are

X, =X+ Xy (7.4-1)

Xg = Xjs + Xina (7.4-2)

These reactances were defined in Section 5.3. They characterize the machine
during balanced steady-state operation whereupon variables in the rotor refer-
ence frame are constants. The zero frequency value of X q(s) or X ,(s) is found by
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replacing the operator s with zero. Hence, the operational impedances for balanced
steady-state operation are

X,0) =X, (7.4-3)
X,(0) = X, (7.4-4)
Similarly, the steady-state value of the transfer function is
G(0) = @ (7.4-5)
T

The g- and d-axis transient reactances are defined as
X, X

mq*~lkql
X =X+ —— (7.4-6)
q Is N
Xlkql +qu
X, X
X=X+ (7.4-7)
Xpey + Xond

Although X7 has not been defined previously, we did encounter the d-axis
transient reactance in the derivation of the approximate transient torque-angle
characteristic in Chapter 5.

The g- and d-axis subtransient reactances are defined as

X, X X
q* " Ik ki
U , e (7.4-8)
quXlkq1 + quXlqu + Xlkqulqu
Xina XX
X =X+ (7.4-9)
md%igg t EmaXpg ¥ Xigipg

These reactances are the high-frequency asymptotes of the operational
impedances. That is

Xy(o0) = Xé’ (7.4-10)

Xy(c0) = X/ (7.4-11)

The high-frequency response of the machine is characterized by these reac-
tances. It is interesting that G(oo) is zero, which indicates that the stator flux
linkages are essentially insensitive to high frequency changes in field voltage.
Primes are used to denote transient and subtransient quantities, which can be
confused with rotor quantities referred to the stator windings by a turns ratio.
Hopefully, this confusion is minimized by the fact that X} and X; are the only
single-primed parameters that are not referred impedances.

Although the steady-state and subtransient reactances can be related to the
operational impedances, this is not the case with the transient reactances.

183



184

7 Machine Equations in Operational Impedances and Time Constants

It appears that the d-axis transient reactance evolved from Doherty and Nickle’s
[3] development of an approximate transient torque-angle characteristic where
the effects of d-axis damper windings are neglected. The g-axis transient reac-
tance has come into use when it became desirable to portray more accurately
the dynamic characteristics of the solid iron rotor machine in transient stability
studies. In many of the early studies, only one damper winding was used to
describe the electrical characteristics of the g-axis, which is generally adequate
in the case of salient-pole machines. In our earlier development, we implied a
notational correspondence between the kql and the fd windings and between
the kq2 and the kd windings. In this chapter, we have associated the kql winding
with the transient reactance (7.4-6), and the kq2 winding with the subtransient
reactance (7.4-8). Therefore, it seems logical to use only the kg2 winding when
one damper winding is deemed adequate to portray the electrical characteristics
of the q axis. It is recalled that in Chapter 5, we chose to use the kq2 winding rather
than the kql winding in the case of the salient-pole hydro turbine generator.

It is perhaps apparent that the subtransient reactances characterize the equiv-
alent reactances of the machine during a very short period of time following
an electrical disturbance. After a period, of perhaps a few milliseconds, the
machine equivalent reactances approach the values of the transient reactances,
and even though they are not directly related to X (s) and Xy(s), their values
lie between the subtransient and steady-state values. As more time elapses
after a disturbance, the transient reactances give way to the steady-state reac-
tances. In Chapter 5, we observed the impedance of the machine “changing”
from transient to steady state following a system disturbance. Clearly, the use
of the transient and subtransient quantities to portray the behavior of the
machine over specific time intervals was a direct result of the need to simplify
the machine equations so that precomputer computational techniques could
be used.

7.5 Standard Synchronous Machine Time Constants

The standard time constants associated with a four-rotor winding synchronous
machine are given in Table 7.5-1. These time constants are defined as

7/ and Tz/io are the g- and d-axis transient open-circuit time constants.

qo
7go and 7y are the g- and d-axis subtransient open-circuit time constants.
7, and 7/, are the g- and d-axis transient short-circuit time constants.

7, and 7/ are the g- and d-axis subtransient short-circuit time constants.

In the above definitions, open and short circuit refers to the conditions of the
stator circuits. All of these time constants are approximations of the actual time
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Table 7.5-1 Standard Synchronous Machine Time Constants.

Open-Circuit Time Constants
r o 1 1
Tgo = (Xlkql +qu)

’
Oyl

A | /
Tao = Gy (XZfd +de>

T” — 1 X/ + Xm’in,kql
1 @p r[(qz leq2 qu +)(kaq1

/
= 1 X+ ZnaXip
do w1, lked XMd+Xl/]d

Short-Circuit Time Constants

T’ — 1 ( l/k + quXIs )
q wbr,’(q] ql " XX

=1 1 XonaXis

d (u,,rf’d Ifd ~ X,q+X

" 1 ! quxlsxl/m

9T Xlkq2+XX X X! X1 X!

Dyl mqX1s tXmg X e TX1sX ey

/

= 1 roy XonaXis Xy

47 gy \ T T X XX X X X

constants, and when used to determine the machine parameters, they can lead to
substantial errors in predicting the dynamic behavior of a synchronous machine.
More accurate expressions for the time constants are derived in the following
section.

7.6 Derived Synchronous Machine Time Constants

The open-circuit time constants, which characterize the duration of tran-
sient changes of machine variables during open-circuit conditions, are
the reciprocals of the roots of the characteristic equation associated with
the operational impedances, which, of course, are the poles of the opera-
tional impedances. The roots of the denominators of X (s) and Xy(s) can be
found by setting these second-order polynomials equal to zero. From X (s),
(7.3-7)

T, +T7
gt 1 (7.6-1)

qu qu qu Tq3

From X 4(s), (7.3-19)

T + 7T
et 1, (7.6-2)

Ta1Ta3 Ta1Ta3
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The roots are of the form

b b | 4c
S = —5 + 5 1- ﬁ (7.6-3)

The exact solution of (7.6-3) is quite involved. It can be simplified, however, if
the quantity 4c/b? is much less than unity [4]. In the case of the g-axis

4 YTy (7.6-4)
b2 (1 +7p)? '
It can be shown that
J J ! A
4Tq1 g3 4rkq1rkq2 <Xlkq1 + Xlqu)
(Tq1 + 7g2)? h x (v r (7:6:5)
mq <rkq1 + rkq2>
In the case of the d-axis
ar r (X' + X! )
47, T, d" kd \“Ifd lked
aifas Ife (7.6-6)

2~ 2
RNy
In most cases, the right-hand side of (7.6-5) and (7.6-6) is much less than unity.
Hence, the solution of (7.6-3) with 4¢/b? < 1 and ¢/b < b is obtained by employing
the binomial expansion, from which
c

5i=—3 (7.6-7)

s,=-b (7.6-8)

Now, the reciprocals of the roots are the time constants, and if we define the tran-
sient open-circuit time constant as the largest time constant and the subtransient
open-circuit time constant as the smallest, then

b
Téo = E
=75+ Ty (7.6-9)
and
=1
T
S (7.6-10)
1+17, / Tq1
Similarly, the d-axis open-circuit time constants are
‘L'clio =14+ 7Ty (7.6-11)
T
A (7.6-12)

1+ 15/7tq



7.6 Derived Synchronous Machine Time Constants

Table 7.6-1 Derived Synchronous Machine Time Constants.

Open-Circuit Time Constants

r 1 1
y 1 /
Tao = Gy (XZfd + X ) o <Xlkd +de)

1 (Xr + Ximg tkq1>
—
yo g \ 2T X g
qo P
o Xlega¥mq
L
—— (X! +X,
Wi ( lkql mq)
‘md Xy
o lr’ (X;kd+x’ +xf
" b'kd Ifd
do wbr, (X+5ma)

1+
mbyf (45

Short-Circuit Time Constants

1 Xy X 1 Ko X,
Tl = ()(l/k + mg“ls )+ - (}(l/k + mgtls
a wyry, gl XX w1, 2 X AKXy

q2
XX, XX,
)= L ()(l/d+ L) + L <)(l/kd+ m)
1y If X+ Xomg yryy X+ Xomg

1 (X N XXX n )
’ Ikq2 x"
" g 02" XpugXps+Xmg lkq1+xbxlkq1
1 ( X4 XmgXis )
Oty \ a2 * X Xmq

1 ( X mqXis >
wbrl/(q kg1 * Xls”(mll

XmdXisX ]y
- X !
o O deXb+deX,fd+XmX,,d

s 4 Xind
ubr Ikd Xb*de

X/
w,, T ( yd memd)

The above derived open-circuit time constants are expressed in terms of machine
parameters in Table 7.6-1.

The short-circuit time constants are defined as the reciprocals of the roots
of the numerator of the operational impedances. Although the stator resistance
should be included in the calculation of the short-circuit time constants; its influ-
ence is generally small. From X, q(s), (7.3-7)

Tgs + 7, a5 1

st 4+ s+ =0 (7.6-13)
Tq4Tq6 Tq4Tq6

From X (s), given by (7.3-19)

Ty + 7T,
PpwTlas. 1 (7.6-14)
TdaTde Td4Tde
The roots are of the form given by (7.6-3) and, as in the case of the open-circuit
time constants, 4c/b* < 1 and ¢/b < b. Hence
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Ty = Tyq + Tys (7.6-15)
T
P — (7.6-16)
R YL
T[li =Ty + Tys (7.6-17)
T
= d6 (7.6-18)
1+ g5/ 7y

The above derived synchronous machine time constants are given in Table 7.6-1
in terms of machine parameters. It is important to note that the standard machine
time constants given in Table 7.5-1 are considerably different from the more accu-
rate derived time constants. The standard time constants are acceptable approxi-
mations of the derived time constants if

J /
Tg2 > Tt (7.6-19)
and
/
K > T (7.6-20)

In the lumped parameter approximation of the rotor circuits, r{c o 1s generally
much larger than rji - and therefore the standard d-axis time constants are often
good approximations of the derived time constants. This is not the case for the
g-axis lumped parameter approximation of the rotor circuits. That is, rl’{q2 isseldom
ifever larger than rl’{ql, hence the standard g-axis time constants are generally poor
approximations of the derived time constants.

7.7 Parameters from Short-Circuit Characteristics

For much of the twentieth century, results from a short-circuit test performed on
an unloaded synchronous machine were used to establish the d-axis parameters
[5]. Alternative techniques have for the most part replaced short-circuit charac-
terization. Despite being replaced, many of the terms, such as the short-circuit
time-constants, have roots in the analytical derivation of the short circuit response
of a machine. Thus, it is useful to briefly describe the test herein.

If the speed of the machine is constant, then (7.2-1)-(7.2-6) form a set of linear
differential equations that can be solved using linear system theory. Prior to the
short circuit of the stator terminals, the machine variables are in the steady state
and the stator terminals are open-circuited. If the field voltage is held fixed at its
prefault value, then the Laplace transform of the change in v/ ;d is zero. Hence, if
the terms involving r? are neglected, the Laplace transform of the fault currents
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(defined positive out of the machine), for the constant speed operation (w, = w,),
may be expressed

1/X

r 2..r
Ry wi X, + @SV (8) — cobvds(s)] (7.7-1)

o 1/X4(s) TV (5)
i(s) = "ot 2as 1 wi l X5 + wysv7, (s) + a)b as(8) (7.7-2)
where
ol 1 1 )
a= > <Xq(s) + Xd(S)> (7.7-3)

It is clear that the 0 quantities are zero for a three-phase fault at the stator termi-
nals. It is also clear that w,, @, and w, are all equal in this example.
Initially, the machine is operating open-circuited, hence

v = V2v, (7.7-4)

vr

h =0 (7.7-5)

The three-phase fault appears as a step decrease in vy, to zero. Therefore, the
Laplace transform of the change in the voltages from the prefault to fault values

are
Vv,
N

VZS(S) — (77-6)

vi(s)=0 (7.7-7)

If (7.7-6) and (7.7-7) are substituted into (7.7-1) and (7.7-2), and if the terms
involving r, are neglected except for a, wherein the operational impedances
are replaced by their high-frequency asymptotes, the Laplace transform of the
short-circuit currents becomes

1/X,(s)
) = o ( b V2V) (7.7-8)
i (s)= /XS wi\/ivs (7.7-9)
ds 2 + 2as + ? s '
where
oyl 1 1 .
a=— <Xq(oo) + X—d(oo)> (7.7-10)

Replacing the operational impedances with their high frequency asymptotes in «
is equivalent to neglecting the effects of the rotor resistances in a.
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If we now assume that the electrical characteristics of the synchronous machine
can be portrayed by two rotor windings in each axis, then we can express the
operational impedances in terms of time constants. It is recalled that the open-
and short-circuit time constants are respectively the reciprocals of the roots of
the denominator and numerator of the operational impedances. Therefore, the
reciprocals of the operational impedances may be expressed

1 1 (1+TL;OS) (1+T(;ZS)
== (7.7-11)
8 X, (1+ T’s) 1+71)s)
1+7,s)(1+ T” s)
Xl X 1 ) d (7.7-12)
4(S) d (1+Tds) (1+‘L'ds)
These expressions may be written as [6]
1 1 As Bs
— ==\ 1+ + 7.7-13
X, X, < T+7s 1+ ré’s) ( )
1 1 Cs Ds
=—(1+ + 7.7-14
X, Xy < I+7s 1+ rc’l’s) ( )
where
g (1= 700/ 7q) (1 = 740/ 74
A=-2 (- ‘J),,( - ) (7.7-15)
74 /74
1 _ T/ /T” TN /T/I
B=— w )1 = 7 ) (7.7-16)
1-1,/74

The constants C and D are identical to A and B, respectively, with the g subscript
replaced by d in all time constants.

Since the subtransient time constants are considerably smaller than the tran-
sient time constants, (7.7-13) and (7.7-14) may be approximated by

1L _1 (1 1 T$S+i_£1 s
X () X 7 X X 1+ 1748 Xy ot Xy ) 1+71ys

q

(7.7-17)
L1 (el 1\ % (1 w1\ WS
X, Xy Xy X )1+7s \X) 7 X, J1+7s
(7.7-18)

Although the assumption that the subtransient time constants are much smaller
than the transient time constants is appropriate in the case of the d-axis time
constants, the difference is not as large in the case of the g-axis time constants.
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Hence, (7.7-17) is a less acceptable approximation than is (7.7-18). This inaccu-
racy will not influence our work in this section, however. Also, since we have not
restricted the derivation as far as time constants are concerned, either the stan-
dard or derived time constants can be used in the equations given in this section.
However, if the approximate standard time constants are used, (T‘;O / r‘;) (1/X,) and
(7),/7}) (1/Xy) can be replaced by 1/X and 1/X), respectively.

If (7.7-17) and (7.7-18) are appropriately substituted into (7.7-8) and (7.7-9), the
fault currents in terms of the Laplace operator become

oo () (e )|l _1)
£ s s2+2as+w§ X, g Xy Xy ) 1+71s

! "
1 qu 1 TqS
+ - v | (7.7-19)
Xy 1qXg) l+1gs
2
v o= (Y2 “ 1 (1 1\ W
ds s s2+2as+ ] ) | Xq Xy Xy ) 1+7ls
/ "
1 Td 1 ‘L'dS
T . (7.7-20)
X T, Xy ) 1+1)s

Equations (7.7-19) and (7.7-20) may be transformed to the time domain by the
following inverse Laplace transforms. If a and « are much less than w,, then

L—l wbs — b o3
= e Msinw,t (7.7-21)
(s+a) (s +2as + @)

2
@y

-1
l(s +a) (s +2as + a)i)

] =e % —e " cosmyt (7.7-22)

If (7.7-21) is applied term by term to (7.7-19) with a set equal to zero for the term
1/X, and then 1/7; and 1/7; for successive terms, and if (7.7-22) is applied in a
similar manner to (7.7-20), we obtain [6]

LV

i"' = ——e *sinw,t (7.7-23)
qs b
Xél

/ !/
ro=Vav, | &+ fao 1 1\ ey L _Tao 1) ey
s X, \7 XX, X7 T X,

— —,—e¢ "cosawyt (7.7-24)

It is clear that @, may be replaced by w, in the above equations.
Initially, the machine is operating open-circuited with the time zero position
of the g- and d-axis selected so that the a-phase voltage is maximum at the time
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the g-axis coincides with the axis of the a phase. If we now select time zero at the
instant of the short-circuit, and if the speed of the rotor is held fixed at synchronous
speed then

0, = wyt + 0,(0) (7.7-25)

where 6,(0) is the position of the rotor relative to the magnetic axis of the as wind-
ing at the time of the fault. In other words, the point on the a-phase sinusoidal
voltage relative to its maximum value. Substituting (7.7-25) into the transforma-
tion given by (2.3-7) yields the a-phase short-circuit current

!/ /!
. 1 Tdo 1 1 _[/ ! ]. Tdo ]. _[/ "
i =2V | —4+ B— - — Je/u4| — -2 — e tu
= V2, le < X, Xy X' X,

X sinf[wyt + 6,(0)]

2V 2V
_L(L_F 1 )e—atsiner(o)_L<i+ 1 )e—at

AT AT
2 Xd Xq 2 Xd Xq
X sin[2w,t + 6,(0)] (7.7-26)

The short-circuit currents in phases b and ¢ may be expressed by displacing each
term of (7.7-26) by —2x/3 and 2x/3 electrical degrees, respectively.

Let us take a moment to discuss the terms of (7.7-26) and their relationship
to the terms of (7.7-23) and (7.7-24). Since the rotor speed is held fixed at syn-
chronous, the rotor reference frame is the synchronously rotating reference frame.
In Section 2.7, we showed that a balanced three-phase set appears in the syn-
chronously rotating reference frame as variables proportional to the amplitude
of the three-phase balanced set, (2.7-5) and (2.7-6) which may be time varying.
Therefore, we would expect that all terms on the right-hand side of (7.7-24), except
the cosine term, would be the amplitude of the fundamental frequency-balanced
three-phase set. We see from (7.7-26) that this is indeed the case. The amplitude
of the balanced three-phase set contains the information necessary to determine
the d-axis parameters. Later, we will return to describe the technique of extracting
this information.

From the material presented in Section 2.9, we would expect the exponentially
decaying offset occurring in the abc variables to appear as an exponentially decay-
ing balanced two-phase set in the synchronously rotating reference frame as illus-
trated by (2.9-10) and (2.9-11). In particular, if we consider only the exponentially
decaying term of the abc variables, then

L _ Vw1 g

Fas 2 (X” tx
d q

) e "' sin 6,(0) (7.7-27)
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bs 2 \ X)Xy 3

Vv (1 oa

- _at s 2
i = > (X" + )7> e 'sin [0,(0) + ?] (7.7-29)
d q

where the asterisk is used to denote the exponentially decaying component of
the short-circuit stator currents. If these currents are transformed to the rotor
(synchronous) reference frame by (2.3-5), the following g- and d-axis currents are
obtained:

2V,
i = L( 1 + 1 )e“” sin wyt (7.7-30)

it = _ﬂ (L + 1 )e_at sin [er(o) — Z—E:I (77-28)

qs " 1"
2 \ X X7
- \/EVS 1 1\ _u
lzs = — 5 (}T‘Ii’ + }(_é/ e COSCObt (77-31)

These expressions do not appear in this form in (7.7-23) and (7.7-24); how-
ever, before becoming too alarmed, let us consider the double-frequency
term occurring in the short-circuit stator currents. In particular, from
(7.7-26)

- \/EV 1 1 Cat

las = —TS (}T{’i’ — )(—(;/) e lsm[Za)bt + 0,.(0)] (77-32)
Therefore

Vav, (1 1\ o 27

fhe === (}Tg - X_(;’ e *'sin [Zwbt +0,(0) — ?] (7.7-33)

. \/EV 1 1 . 2r

= _TS ()T(;' - )Té’) e " sin [Zwbt +0,(0) + ?] (7.7-34)

where the superscript ** denotes the double-frequency components of the
short-circuit stator currents. These terms form a double-frequency, balanced
three-phase set in the abc variables. We would expect this set to appear as a
balanced two-phase set of fundamental frequency in the synchronously rotating
reference frame (w = w, or w,) and as decaying exponentials in a reference frame
rotating at 2w,. Thus

2V
e = —L< L_1 )e“t sin w, ¢t (7.7-35)

qs S
2 Xd Xq

) 2V
i = —\/— S ( 1L _1 )e“”coswbt (7.7-36)
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We now see that if we add if, (7.7-30), and igs", (7.7-35), we obtain (7.7-23).

Similarly, if we add i;’;, (7.7-31), and i;:*, (7.7-36), we obtain the last term

of (7.7-24). In other words, (7.7-23) and (7.7-24) can be written as

2V, 2V,
ir = V2, <i+ L )e‘“tsinwbt—L(i—i)e“”sinwbt

qs TR 77 77
2 Xd Xq 2 Xd Xq

(7.7-37)

T, ’ T/ "
-V L 1 S T VR (S ) Y
Xd Td Xd Xd Xd Td Xd

2V, 2V,
—L (L+ 1 )e“”coswbt— Vv, (i_ 1 )e“”coswbt

AT "
2 Xd Xq 2 Xd Xq

(7.7-38)

If (7.7-23) and (7.7-24) had originally been written in this form, perhaps we could
have written i, by inspection or at least accepted the resulting form of i, without
questioning the theory that we had established in Chapter 2.

Let us now return to the expression for the short-circuit current i, given by
(7.7-26). In most machines, X(;/ and Xé’ are comparable in magnitude, hence the
double-frequency component of the short-circuit stator currents is small. Conse-
quently, the short-circuit current is predominately the combination of a decaying
fundamental frequency component and a decaying offset. We first observed the
waveform of the short-circuit current in Figure 5.9-8 and Figure 5.9-10. Although
the initial conditions were different in that the machine was loaded and the
speed of the machine increased slightly during the three-phase fault, the two
predominate components of (7.7-26) are evident in these traces.

As mentioned previously, the amplitude or the envelope of the fundamen-
tal frequency component of each phase current contains the information
necessary to determine the d-axis parameters. For purposes of explanation,

let
Vav |2 T 1l 1\ .y 1 %1\ .y
o= V2V |+ 2 — e [ o - R e
s X \ T XX, X7 T X,
(7.7-39)

where iy, is the envelope of the fundamental component of the short-circuit
stator currents. This can be readily determined from a plot of any one of the
instantaneous phase currents.

Now, at the instant of the fault

Vv,

17
Xd

i (t=0%)= (7.7-40)
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At the final or steady state value

V2V,
X
Hence, if we know the prefault voltage and if we can determine the initial and final

values of the current envelope, X’ ‘;’ and X, can be calculated.
It is helpful to break up i, into three components

i (t > 00) = (7.7-41)

fgp =i+ 0, + g (7.7-42)

where i is the steady-state component, i, is the transient component that decays
according to 7, and i, is the subtransient component with the time constant /. It
is customary to subtract the steady-state component i, from the envelope and plot
(i, + iy) on semilog paper as illustrated in Figure 7.7-1. Since 7/ > 7/, the plot of
(i, + i) is determined by i, as time increases, and since the plot is on the semi-log
paper, this decay is a straight line. If the transient component is extended to the
y-axis as shown by the dashed line in Figure 7.7-1, the initial value of the transient
component is obtained

T,
i(t=0%) =2V, <i{°}% - )%) (7.7-43)
Ty d d

Since X, is determined from (7.7-41), we can now determine (7/ /7}) (1/Xy),
or if we choose to use the standard time constants, (r{’jo / 1‘;) (1/X,) is replaced
by 1/X],.

10g (i + i)

Time

Figure 7.7-1  Plot of transient and subtransient components of the envelope of the
short-circuit stator current.

195



196

7 Machine Equations in Operational Impedances and Time Constants

The time constant 7/ can also be determined from the plot shown in Figure 3.
In particular, r(; is the time it takes for i, to decrease to 1/e (0.368) of its original
value. Thus, we now know X' ;’, X4, and T{i' Also, X' (; is known if we wish to use the
standard, approximate time constants for T(;o if we wish to use the derived time
constants to calculate the d-axis parameters.

We can now extract the subtransient component from Figure 7.7-1 by subtract-
ing the dashed-line extension of the straight-line portion, which is i,, from the plot
of (i, + iy,). This difference will also yield a straight line when plotted on semilog
paper from which the initial value of the subtransient component, i ,(t = 0*), and
the time constant 7// can be determined.

Thus we have determined X‘;, X4 r;, r;’, and T(;O'The stator leakage reactance
X, can be calculated from the winding arrangement or from tests, or a reasonable
value can be assumed. Hence, with a value of X, we can determine the d-axis
parameters. If r} | << 1 itis generally sufficient to use X', and the standard time
constants which, of course, markedly reduces the calculations involved.

7.8 Parameters from Frequency-Response
Characteristics

Toward the end of the twentieth century, a transition was made to determine the
machine parameters for dynamic and transient stability studies from measured
frequency-response data rather than short-circuit tests [7-10]. These tests are
generally performed by applying a low voltage across two terminals of the stator
windings, with the rotor at standstill and either the g- or d-axis aligned with the
resultant magnetic axis established by the two stator windings. The frequency
of the applied voltage is varied from a very low value of the order of 1073 Hz up
to approximately 100 Hz. From these data X q(s), X 4(s), and G(s) are determined.
An advantage of this method is that one can gain information regarding both the
g- and d-axes, unlike the short-circuit test, which provides information on the
parameters of only the d-axis. Moreover, the frequency-response test provides
data from which the rotor can be represented by as many rotor windings in each
axis as is required to obtain an acceptable match of the measured operational
impedances and G(s). Although popular, it has been shown that a number of
issues can hinder the frequency response testing [11-13]. These include that
minor hysteresis loops are traversed in the machine core under the small signal
injection. As a result, the measured magnetizing inductances correspond to
incremental permeability values, which lead to lower inductance than that
predicted by the slope of an anhysteretic magnetizing curve. In addition, the
low-level currents do not provide typical rotor heating or magnetic biasing, so that
respective damper winding resistance and leakage inductances do not correspond
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10
Xu(s)
- X (5)
o
= 1r Xa(s)
=
el
g
=il
glO
=) | | | | |
10 1073 1072 107! 1 10 107

Frequency, Hz

Figure 7.8-1  Plot of X ,(s) and X ;(s) versus frequency for a solid iron synchronous
machine.

to what would be experienced under load. These issues, along with techniques
to characterize models that include saturation and an arbitrary rotor network
representation using a combination of magnetization and frequency response
testing, are described in Reference 14. Existing industry standards, which rely
heavily on frequency response testing, are detailed in Reference 15.

To gain understanding of frequency response methods, plots of measured X (s)
and X ,(s) versus frequency similar to those given in Reference 10 are shown in
Figure 7.8-1 for a solid iron rotor machine. Figure 7.8-2 and Figure 7.8-3 show,

(1 +0.64s)(1 +0.016s)
(1+1.59s)(1 + 0.05s)

10 X,(s)=2.0

X(s), pu

107!

| | | | |
1073 1072 107! 1 10 10?
Frequency, Hz

Figure 7.8-2  Two-rotor winding approximation of X (s).
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10~
X,(5)=2.0 (1+0.95)(1 +0.095)(1 + 0.0065)

(1+1.95)(1 +0.25)(1 +0.01s)

) | | | | J
1073 1072 107! 1 10 102
Frequency, Hz

Figure 7.8-3  Three-rotor winding approximation of X(s).

respectively, a two-rotor winding and a three-rotor winding approximation of
X (). It is recalled from (7.7-11) that for two rotor windings

(1 + T(/IS) (1 + T(;/S)

X =X
o = X T ) (L o)

(7.8-1)

As illustrated in Figure 7.8-2 and Figure 7.8-3, the asymptotic approximation
of (1 + 7s) is used to match the plot of the magnitude of X (s) versus frequency.
Although a computer program could be used to perform curve fitting, the asymp-
totic approximation is sufficient for our purposes. It is important, however, that
regardless of the matching procedure employed, care must be taken to match the
operational impedances as closely as possible over the frequency range from 0.05
to 5Hz, since it has been determined that matching over this range is critical in
achieving accuracy in dynamic and transient stability studies [10].

The asymptotic approximation of (1 + jwr), where s has been replaced by jw, is
that for oz < 1, (1 + jewr) is approximated by 1, and for wz > 1, (1 + jewr) is approx-
imated by jwz. The corner frequency or “breakpoint” is at wz = 1, from which the
time constant may be determined. At the corner frequency, the slope of the asymp-
totic approximation of (1 + jewr) changes from zero to a positive value increasing by
one decade in amplitude (a gain of 20 dB) for every decade increase in frequency. It
follows that the asymptotic approximation of (1 + jewz)™! is a zero slope line to the
corner frequency whereupon the slope becomes negative, decreasing in amplitude
by one decade for every decade increase in frequency.

To obtain a lumped parameter approximation of X (s) by using this procedure,
we start at the low-frequency asymptote, extending this zero slope line to a point
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where it appears that a breakpoint and thus a negative slope should occur in order
to follow the measured value of X (s). Since it is necessary that a negative slope
occur after the breakpoint, a (1 + s) factor must be present in the denominator.
Hence, this corner frequency determines the largest time constant in the denom-
inator, which is 7, in the case of the two-rotor winding approximation. We now
continue on the negative slope asymptote until it is deemed necessary to again
resume a zero slope asymptote in order to match the X (s) plot. This swing back
to a zero slope line gives rise to a (1 + zs) factor in the numerator. This corner
frequency determines the largest time constant in the numerator, z; in the case of
the two-rotor winding approximation. It follows that 7/, and 7, are determined by
the same procedure.

The phase angle of X (s) can also be measured at the same time that the mag-
nitude of X (s) is measured. However, the phase angle was not made use of in the
curve-fitting process. Although the measured phase angle does provide a check
on the asymptotic approximation of X (s), it is not necessary in this “minimum
phase” system, where the magnitude of X (s) as a function of frequency is suf-
ficient to determine the phase X (s) [9]. Hence, the asymptotic approximation
provides an approximation of the magnitude and phase of X (s).

The stator leakage reactance, X, can be determined by tests or taken as the
value recommended by the manufacturer that is generally calculated or approxi-
mated from design data. The value of X should not be larger than the subtransient
reactances since this choice could result in negative rotor leakage reactances that
are not commonly used. For the machine under consideration, X;, of 0.15 per
unit is used. Once a value of X, is selected, the parameters may be determined
from the information gained from the frequency-response tests. In particular, from
Figure 7.8-2

— " _
X,=2pu X, =025pu

750 = 1.59 second 7, = 0.05 second

ré = 0.64 second ré’ = 0.016 second

with X, selected as 0.15pu, X,,, becomes 1.85 pu. Four parameters remain to be
determined r]’{ql, Xl’kql, r]’{qz, and Xz,qu' These may be determined from the expres-
sions of the derived g-axis time constants given in Table 7.6-1.

There is another approach by which the parameters of the lumped-circuit
approximation of X (s) may be determined that is especially useful when it is
necessary to represent the rotor with more than two windings in an axis. By a
curve-fitting procedure, such as illustrated in Figure 7.8-2 and Figure 7.8-3, it is

possible to approximate X (s) by

N, ()
D, (s)

X, =X, (7.8-2)
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where in general

N(8) = A+ 7)1 + 7548) - - - (7.8-3)

Dy(s) = (1 + 7y8)(L + 708) - - - (7.8-4)

The input impedance for a two-rotor winding circuit is expressed by (7.3-1).
For any number of rotor circuits

N,(s)
Z,(s) =R, oY (7.8-5)
where
1 1 1
il - 7.8-6
Req Rqa qu ( )
Ny(8) = (1 + 74q)(L + 7g8) - - - (7.8-7)
D,(s) =1+ 7,8 -~ (7.8-8)

Itis clear that (7.3-6) is valid regardless of the number of rotor windings. Thus, if
we substitute (7.8-2) into (7.3-6) and solve for Z,,(s), we obtain [7]

$X g/ @p[N(8) — (Xjs/X)D,(5)]
D, (s) = N,(s)

Since the time constants of (7.8-3) and (7.8-4) can be obtained by a curve-fitting
procedure, and since X, is readily obtained from X(s), all elements of (7.8-9)
are known once X, is selected. Hence, values can be substituted into (7.8-9),
and after some algebraic manipulation, it is possible to put (7.8-9) in the form of
(7.8-5), whereupon R,, and the time constants of (7.8-7) and (7.8-8) are known.
The parameters of the lumped circuit approximation can then be determined. For
example, in the case of the two-winding approximation

(7.8-9)

Zq,(s) =

1

[1 1] T =LLI] (7.8-10)

Tqb Tqa 7 Req Qa
kq2

where the second row of (7.8-10) is (7.3-5). Thus, rl’cq1 and rl’{q2 can be evaluated
from (7.8-10), and then Xl’kq1 and Xl’qu from (7.3-3), and (7.3-4), respectively.
In the case of the three-rotor winding approximation in the g-axis [7], (7.8-10)
becomes
1

1 1 1 rl{lql 1 1
Tgb + Tge Tga + Tge Tqa + Tgb % =z |7 + Top (7.8-11)
1 eq

Tqb ch Tqa ch Tqa Tqb TQa TQb

oy
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It is left to the reader to express Z q,(s) for three-rotor windings.

In the development of the lumped parameter circuit approximation, there is gen-
erally no need to preserve the identity of a winding that might physically exist in
the g-axis of the rotor, since the interest is to portray the electrical characteristics
of this axis as viewed from the stator. However, in the d-axis, we view the char-
acteristics of the rotor from the stator by the operation impedance X ,(s) and the
transfer function G(s). If a lumped parameter circuit approximation is developed
from only X ,(s), the stator electrical characteristics may be accurately portrayed;
however, the field-induced voltage during a disturbance could be quite different
from that which occurs in the actual machine, especially if the measured G(s),
and the G(s) which results when using only X ;(s), do not correspond. A represen-
tation of this type, wherein only X ,(s) is used to determine the lumped parameter
approximation of the d-axis and the winding with the largest time constant is
designated as the field winding, is quite adequate when the electrical character-
istics of the field have only secondary influence upon the study being performed.
Most dynamic and transient stability studies fall into this category. It has been
shown that if the electrical characteristics of the stator are accurately portrayed,
then the electromagnetic torque is also accurately portrayed even though the sim-
ulated field variables may be markedly different from those which actually occur
[16]. In Reference 16, it is shown that this correspondence still holds even when a
high initial response excitation system is used.

When the induced field voltage is of interest, as in the rating and control
of solid-state switching devices that might be used in fast response excita-
tion systems, it may be necessary to represent more accurately the electrical
characteristics of the field circuit. Several researchers have considered this prob-
lem [9, 17, 18]. .M. Canay [17] suggested the use of an additional rotor leakage
inductance whereupon the d-axis circuit for a two-rotor winding approximation
would appear as shown in Figure 7.8-4. The additional rotor leakage reactance
or the “cross-mutual” reactance provides a means to account for the fact that the
mutual inductance between the rotor and the stator windings is not necessarily
the same as that between the rotor field winding and equivalent damper windings
[10]. .M. Canay [17] showed that with additional rotor leakage reactance,
both the stator and the field electrical variables could be accurately portrayed.
However, in order to determine the parameters for this type of d-axis lumped
parameter approximation, both X,(s) and G(s) must be used [6, 9].

There are several reasons for not considering the issue of the additional rotor
leakage reactance further at this time. Instead, we will determine the lumped
parameter circuit approximation for the d-axis from only X,(s) using the same
techniques as in the case of X q(s) and designate the rotor winding with the
largest time constant as the field winding. There are many cases where the
measured X (s) yields a winding arrangement that results in a G(s) essentially

201



202 | 7 Machine Equations in Operational Impedances and Time Constants
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Figure 7.8-4  Two-rotor winding direct-axis circuit with unequal coupling.

the same as the measured G(s), hence the additional rotor leakage reactance
is small. Also, most studies do not require this degree of refinement in the
machine representation, that is, the accuracy of the simulated field variables is of
secondary or minor importance to the system performance of interest. In cases in
which this refinement is necessary, an attractive approach is to forego the use of
lumped parameters and use the arbitrary rotor network representation proposed
in Reference 19. For those who have a need to develop a model of a power system
without having access to machine parameter values, Kimbark [20] provides a
typical range of per-unit values of synchronous machine parameters and time
constants that can be a helpful place to start an analysis.

References

1 R. H. Park, “Two-Reaction Theory of Synchronous Machines—Generalized
Method of Analysis—Part 1,” AIEE Trans., Vol. 48, July 1929, pp. 716-727.

2 R. P. Schulz, W. D. Jones, and D. W. Ewart, “Dynamic Models of Turbine
Generators Derived from Solid Rotor Equivalent Circuits,” IEEE Trans. Power
App. Syst., Vol. 92, May/June 1973, pp. 926-933.

3 R. E. Doherty and C. A. Nickle, “Synchronous Machines—III, Torque-Angle
Characteristics under Transient Conditions,” AIEE Trans., Vol. 46, January
1927, pp. 1-8.

4 G. Shackshaft, “New Approach to the Determination of Synchronous Machine
Parameters from Tests,” Proc. IEE, Vol. 121, November 1974, pp. 1385-1392.

5 IEEE Standard Dictionary of Electrical and Electronic Terms, 2nd ed., John
Wiley and Sons, New York, 1978.

6 B. Adkins and R. G. Harley, The General Theory of Alternating Current
Machines, Chapman and Hall, London, 1975.



7

8

10

11

12

13

14

15

16

17

18

19

20

References

W. Watson and G. Manchur, “Synchronous Machine Operational Impedance
from Low Voltage Measurements at the Stator Terminals,” IEEE Trans. Power
App. Syst., Vol. 93, May/June 1974, pp. 777-784.

P. L. Dandeno and P. Kundur, “Stability Performance of 555 MVA
Turboalternators—Digital Comparisons with System Operating Tests,” IEEE
Trans. Power App. Syst., Vol. 93, May/June 1974, pp. 767-776.

S. D. Umans, J. A. Malleck, and G. L. Wilson, “Modeling of Solid Rotor
Turbogenerators—Parts I and I1,” IEEE Trans. Power App. Syst., Vol. 97,
January/February 1978, pp. 269-296.

IEEE Committee Report, “Supplementary Definitions and Associated Test
Methods for Obtaining Parameters for Synchronous Machine Stability and
Study Simulations,” IEEE Trans. Power App. Syst., Vol. 99, July/August 1980,
pp. 1625-1633.

F. P. de Mello and L. N. Hannett, “Determination of Synchronous Machine
Electrical Characteristics by Test,” IEEE Trans. Power App. Syst., Vol. 102,
December 1983, pp. 1625-1633.

S. H. Minnich, “Small Signals, Large Signals, and Saturation in Generator
Modeling,” IEEE Trans. Energy Convers., Vol. 1, March 1986, pp. 94-102.

A. G. Jack and T. J. Bedford, “A Study of the Frequency Response of Turbo-
generators with Special Reference to Nanticoke G. S.,” IEEE Trans. Energy
Convers., Vol. EC-2, September 1987, pp. 496-505.

D. C. Aliprantis, S. D. Sudhoff, and B. T. Kuhn, “Experimental Character-
ization Procedure for a Synchronous Machine Model with Saturation and
Arbitrary Rotor Network Representation,” IEEE Trans. Energy Convers.,

Vol. 20, September 2005, pp. 595-603.

IEEE Standard115, Test Procedure for Synchronous Machines Part 2: Test
Procedures and Parameter Determination for Dynamic Analysis, 2009.

D. R. Brown and P. C. Krause, “Modeling of Transient Electrical Torques in
Solid Iron Rotor Turbogenerators,” IEEE Trans. Power App. Syst., Vol. 98,
September/October 1979, pp. 1502-1508.

I. M. Canay, “Causes of Discrepancies on Calculation of Rotor Quantities and
Exact Equivalent Diagrams of the Synchronous Machine,” IEEE Trans. Power
App. Syst., Vol. 88, July 1969, pp. 1114-1120.

Y. Tabeda and B. Adkins, “Determination of Synchronous Machine Parameters
Allowing for Unequal Mutual Inductances,” Proc. IEE, Vol. 121, December
1974, pp. 1501-1504.

D.C. Aliprantis, S.D. Sudhoff, and B.T. Kuhn, “A Synchronous Machine Model
with Saturation and Arbitrary Rotor Network Representation,” IEEE Trans.
Energy Convers., Vol. 20, September 2005, pp. 584-594.

E. W. Kimbark, Power System Stability: Synchronous Machines, Vol. 3, Dover
Publications, New York, 1968.

203



204

7 Machine Equations in Operational Impedances and Time Constants

Problems

71

7.2

73

74

7.5

7.6

7.7

7.8

79

710

711

Derive expressions for the short-circuit time constants with the stator resis-
tance included.

Calculate and compare the standard and derived time constants for the
hydro turbine generator given in Chapter 5.

Repeat Problem 7.2 for the steam turbine generator given in Chapter 5.

Derive an expression for the instantaneous electromagnetic torque during
a three-phase short circuit at the terminals. Assume the stator terminals
of the machine are initially open-circuited and the speed does not change
during the fault.

Derive an expression for the instantaneous field current for a three-phase
short circuit at the terminals. As in Problem 7.4, assume that the machine is
initially operating with the stator open-circuited and that the speed remains
constant during the fault.

Consider the short-circuit stator currents shown in Figure 7P-1. The
machine is originally operating open-circuited at rated voltage. The
speed is fixed during the fault. Assume r, = 0.0037 pu, X; = 1.7 pu, and
X, = 0.19 pu. Determine the remaining d-axis circuit parameters using (a)
the derived time constants and (b) the standard time constants.

For two-rotor windings in the d-axis, show that i’ fd = pG(p)i!, for v’}d =0.

Determine rk 1 Xl’k , ,and X! _ for the two-rotor winding approxima-
ql kq2 lkq2
tion of X (s) given in Figure 7.8-2 by using (a) the derived time constants

and (b)(7.8-10), (7.3-3), and (7.3-4).

Determine the parameters of a two-rotor winding approximation of X ,(s)
given in Figure 7.8-1.

Express Z,,(s) for a three-rotor winding approximation. Compare the terms
in the denominator to the last two rows of (7.8-11).

Determine the time constants of X ;,(s) given in Figure 7.8-1 for a three-rotor
winding approximation.
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Figure 7P-1  Short-circuit stator currents.

712

7.13

7.14

715

7.16

717

Determine the parameters of a three-rotor winding approximation of X(s)
shown in Figure 7.8-2.

Repeat Problem 7.12 for X ,(s) in Figure 7.8-1.

Write Park’s equations for a synchronous machine represented by three
damper windings in the g-axis and two damper windings and a field wind-
ing in the d-axis.

Derive X 4(s) and G(s) for the d-axis circuit with the additional rotor leakage
reactance shown in Figure 7.8-4. Show that both have the same denomina-
tor.

Write the voltage equations in the rotor reference frame for the d-axis circuit
with the additional rotor leakage reactance shown in Figure 7.8-4.

Plot the X ,(s) and X (s) for the steam and hydroturbine generators whose
parameters are given in Chapter 5.
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8

Eigenvalues and Voltage-Behind-Reactance Machine
Equations

8.1 Introduction

There are alternative formulations of induction and synchronous machine
equations that warrant consideration since each has a specific useful purpose. In
particular, (1) linearized or small-displacement formulation for operating point
stability issues; (2) neglecting stator electric transients for large-excursion
transient stability studies, which was considered in Chapter 6; and (3)
voltage-behind-reactance (VBR) formulation convenient for machine-converter
analysis and simulation. The first and third formulations are considered in this
chapter.

Although standard computer algorithms may be used to automatically linearize
machine equations, it is important to be aware of the steps necessary to perform
linearization. This procedure is set forth by applying Taylor expansion about
an operating point. The resulting set of linear differential equations describes
the dynamic behavior during small displacements or small excursions about
an operating point, whereupon the basic linear system theory can be used to
calculate eigenvalues. In the first sections of this chapter, the nonlinear equations
of induction and synchronous machines are linearized, and the eigenvalues are
calculated. Although these equations are valid for operation with stator voltages
of any frequency, only rated frequency operation is considered in detail.

Over the years, there has been considerable attention given to the development
of simplified models primarily for the purpose of predicting the dynamic behavior
of electric machines during large excursions in some or all of the machine
variables. Before the 1960s, the dynamic behavior of induction machines was
generally predicted using the steady-state voltage equations and the dynamic
relationship between rotor speed and torque. Similarly, the large-excursion behav-
ior of synchronous machines was predicted using a set of steady-state voltage
equations with modifications to account for transient conditions, as presented in

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/krause_aem4e
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Chapter 5, along with the dynamic relationship between rotor angle and torque.
With the advent of the computer, these models have given way to more accurate
representations. In some cases, the machine equations are programmed in detail;
however, in the vast majority of cases, a reduced-order model is used in computer
simulations of power systems.

In an increasing number of applications, electric machines are coupled to
power electronic circuits. In Chapters 4-6, a great deal of the focus was placed
upon utilizing reference-frame theory to eliminate rotor-dependent inductances
(or flux linkage in the case of the permanent-magnet machine). Although
reference-frame theory enables analytical evaluation of steady-state performance
and provides the basis for most modern electric drive controls, it can be difficult
to apply a transformation to some power system components, particularly power
electronic converters. In such cases, one is forced to establish a coupling between a
machine modeled in a reference frame and a power converter modeled in terms of
physical variables. As an alternative, it can be convenient to represent a machine
in terms of physical variables using a VBR model. In this chapter, the derivation of
a physical-variable voltage-behind-reactance (PVVBR) model of the synchronous
machine is provided, along with the explanation of its potential application and
advantages over alternative model structures. In addition, approximate forms
of the VBR model are described in which rotor-position-dependent inductances
are eliminated, which greatly simplifies the modeling of machines in physical
variables.

8.2 Machine Equations to be Linearized

The linearized machine equations are conveniently derived from voltage
equations expressed in terms of constant parameters with constant driving
forces, independent of time. During steady-state balanced conditions, these
requirements are satisfied, in the case of the induction machine, by the voltage
equations expressed in the synchronously rotating reference frame and by the
voltage equations in the rotor reference frame in the case of the synchronous
machine. Since the currents and flux linkages are not independent variables, the
machine equations can be written using either currents or flux linkages, or flux
linkages per second, as state variables. The choice is generally determined by the
application. Currents are selected here. Formulating the small-displacement
equations in terms of flux linkages per second is left as an exercise for
the reader.

8.2.1 Induction Machine

The voltage equations for the induction machine with currents as state variables
may be written in the synchronously rotating reference frame by setting o = @, [1]
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[ p @ p @
ro+ =X, =X, £ X —< X .
VZS s + w, S w,”SS wy Ms w, Ms lgs
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Ve - Xss rs+ _Xss - XMS _XMS i€
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v —s2 X 2 x —sZx 4+ 2Xx ||
dr | swb Ms w, Ms swb o It @ T | dr

where s is the slip defined by (3.8-11) and the zero quantities have been omit-
ted since only balanced conditions are considered. The reactances X, and X/, are
established by multiplying the diagonal entries in (3.4-25) and (3.4-27) by .

Since we have selected currents as state variables, the electromagnetic torque is
most conveniently expressed as

T, = Xy (i6slly, — i8der) (8.2-2)
Here, the per unit version of (3.5-10) is selected for compactness. The per unit
relationship between torque and speed is (3.7-10), which is written here for con-
venience [1]
wr
T,=2Hp— + T, (8.2-3)
@p

8.2.2 Synchronous Machine

The voltage equations for the synchronous machine in the rotor reference frame
may be written from Section 5.3

]
Vs
Vi1
Vig2
e)’&d
[Via
qs
oKy nHSXe DXy X Ko o fas
txy o den, x|l
) w% Mg 0 w%XMq Mg w%X’LqZ 0 0 bep
0 B(eng o 0 B 2x) B (2x)| |
0 X 0 0 Bl 2, | Ul

(8.2-4)

209



210

8 Eigenvalues and Voltage-Behind-Reactance Machine Equations

where positive currents are assumed into the machine and the reactances are
defined by multiplying the inductances in (5.3-1) and (5.3-2) by w,,.

With the currents as state variables, the per unit electromagnetic torque positive
for motor action is expressed from (5.7-2) as

_ o aro s\ o . 7 e
Ty = Xaga (i + 1+ g ) 5 = Xarg (i + 105, + 10, ) 8 (8.2-5)

The per unit relationship between torque and rotor speed is given by (5.7-3),
which is

a)r
T,=2Hp— +T, (8.2-6)
®p
The rotor angle is expressed from (5.6-1) as
o, (@, —®
5 _b( r > (8.2-7)
p @y

It is necessary, in the following analysis, to relate variables in the synchronously
rotating reference frame to variables in the rotor reference frame. This is accom-
plished by using (5.6-3) with the zero quantities omitted. Thus,

. cosd —sind i
= (8.2-8)
fi sind cosd o
8.3 Linearization of Machine Equations
There are two procedures that can be followed to obtain the linearized machine

equations. One is to employ Taylor’s expansion about a fixed value or operating
point. Thatis, any machine variable f; can be written in terms of a Taylor expansion

about its fixed value, f;,, as [1]

() = g(f,) + & (fi)ASf; + g//;f!i”)A]‘iz NE (8.3-1)
where

fi=Jo + b, (8.3-2)

If only a small excursion from the fixed point is experienced, all terms higher
than the first order may be neglected and g(f;) may be approximated by

g = g(f,) + & (fio) Af; (8.3-3)

Hence, the small-displacement characteristics of the system are given by the
first-order terms of Taylor’s series,

Ag() = g () Af; (8.3-4)
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For functions of two variables, the same argument applies
0 0
8(1.15) = &(fi0.120) + Eg(fm’fzo) Af + ?g(flovfzo) Af, (8.3-5)
1 2
where Ag(f,, f,) is the last two terms of (8.3-5).

If, for example, we apply this method to the expression for induction machine
torque, (8.2-2), then

e e i€ ~ e -e 1€
Te (lqs’ lds l qr’ i dr) ~ T (lqso’ ldso’ l qro’l dro)
i€ e ;e
0T ( Ygso> Liso> U qros dro) IN:
oi¢ fas
qs
+ etc. (8.3-6)

whereupon the small-displacement expression for torque becomes

AT, = Xy (igg,Ally + iy Al A — il ALS ) (8.3-7)

qso dro dsu qr qro

where the added subscript o denotes steady-state quantities.

An equivalent method of linearizing nonlinear equations is to write all vari-
ables in the form given by (8.3-2). If all multiplications are then performed and
the steady-state expressions canceled from both sides of the equations and if all
products of small-displacement terms (Af; Af,, for example) are neglected, the
small-displacement equations are obtained. It is left to the reader to obtain (8.3-7)
by this technique.

8.3.1 Induction Machine

If either of the above-described methods of linearization is employed to
(8.2-1)—(8.2-3), the linear differential equations of an induction machine become

_Avgs_ _rs + bess :)TZXSS w%XMs :)T;XMS 0 -Aies-
Avfis - Z)T;Xss rs+ wﬂbXss - Z_ZXMS wﬂbXMs 0 Aifis
Av;er = w%XMs So Z)TZXMS r; + be;r So :_zX;{r _XMsifiso - X;ri;em Ai{ler
Av:ier =S, Z)TEXMS G%XMS =S, :)TCX;r rllf + fX; XMS gso + X;r :;ero Al:ier

b b b Ao,

-ATL- XMs dro XMs qro _XMSifjso XMsiZso —2Hp 1= w_b -

(8.3-8)
where
5, = 2% (8.3-9)
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It is clear that with applied voltages of rated frequency the ratio of w, to w, is
unity. However, (8.3-8) and (8.3-9) are written with w, included explicitly so as to
accommodate applied voltages of a constant frequency other than rated as would
occur in variable-speed drive systems. The frequency of the applied stator voltages
in variable-speed drive systems is varied by controlling the firing of the source
converter. Therefore, in some applications, the frequency of the stator voltages
may be a controlled variable. It is recalled from Chapter 3 that variable-frequency
operation may be investigated in the synchronously rotating reference frame by
simply changing the speed of the reference frame corresponding to the change
in frequency. Therefore, if frequency is a system input variable, then a small dis-
placement in frequency may be taken into account by allowing the reference-frame
speed to change by replacing o, with ,, + Aw,.

It is convenient to separate out the derivative terms and write (8.3-8) in the form

Epx=Fx+u (8.3-10)
where
T e e sle s1e Aa)r
(x)" = |Alg ALy Alg, Al o (8.3-11)
" = [Ave AvS Avye AV} AT (8.3-12)
[x, 0 X, 0 o |
0 X, 0X, O
1
E=—|Xy, 0 X, 0 0 (8.3-13)
@y
0 X, 0 X, 0
0 0 0 0 —2Hw,
r, :’—ZXSS 0 :’TZXMS 0
— X oo e Xy 0 0
F=- 0 soz—ZXMS roos, :TZX;’ Xyl = Xnils | (8.3-14)
—So Z)TZXMS 0 —So Z)TZX;{r V; XMsif]so + X;rit/]ero
| XMsi:ru _XMsi;‘o _XM iZso XMsiZso 0

In the analysis of linear systems, it is convenient to express the linear differential
equations in the form

px = Ax+ Bu (8.3-15)

Equation (8.3-15) is the fundamental form of the linear differential equations. It
is commonly referred to as the state equation.



8.3 Linearization of Machine Equations

Equation (8.3-10) may be written as

px=(E)"'Fx+ (E)'u (8.3-16)
which is in the form of (8.3-15) with

A = (E)'F (8.3-17)

B = (E)"! (8.3-18)

8.3.2 Synchronous Machines

Linearizing (8.2-4)—(8.2-8) yields (8.3-19). Since the steady-state damper winding
currents (ii/, , igﬂo and i;{'(’}zO) are zero, they are not included in (8.3-19). Since the
synchronous machine is generally connected to an electric system such as a power
system and since it is advantageous to linearize the system voltage equations
in the synchronously rotating reference frame, it is convenient to include the
relationship between Aw, and Aé in (8.3-19). As in the case of linearized
equations for the induction machine, w, is included explicitly in (8.3-19) so that
the equations are in a form convenient for voltages of any constant frequency.
Small, controlled changes in the frequency of the applied stator voltages, as is
possible in variable-speed drive systems, may be taken into account analytically
by replacing @, with ,, + 4w, in the expression for 6 given by (8.2-7).

o T +w§bxq %Xd %XMq %XMq
AV, _w_:Xq s wL;Xd _i Mg _w_z Mg
o O
Av;{,q | wﬂbXMq 0 wﬂbXMq r;qu + wﬂbxlng

- X,
Aer, 0 e (beMd) 0 0
Avig 0 beMd 0 0
o I B (i’ - ) Xygl' = Xypl' ~Xyyol" X, 0
0 q"dso Md \ “dso fdo Md*gso Mq*gso Mq*dso Mq"dso
) i 0 0 0 0
Z’TZXME, :’T:XMd Xyl +Xnal'fgo O Al ]
beMd ﬁXMd Xqi;so 0 Al
0 0 0 ofair,
0 0 0 of|ai,
s (r+ 21,) s (%) 0 of | Aty
I
L Xyq rat EX], 0 0 AAlkd
Xyall, Xyally, —2Hp ol =
0 0 —w, p|L A% |

(8.3-19)
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In most cases, the synchronous machine is connected to a power system where-
upon the voltages vg, and v/, , which are functions of the state variable ¢, will vary
as the rotor angle varies during a disturbance. It is of course necessary to account
for the dependence of the driving forces on the state variables before expressing
the linear differential equations in fundamental form. In power system analysis,
it is often assumed that at some place in the system there is a balanced source that
can be considered a constant amplitude, constant frequency, and zero impedance
source (infinite bus). This would be a balanced independent driving force, which
would be represented as constant voltages in the synchronously rotating reference
frame. Hence, it is necessary to relate the synchronously rotating reference-frame
variables, where the independent driving force exists, to the variables in the rotor
reference frame. The transformation given by (8.2-8) is nonlinear. To incorporate
itinto a linear set of differential equations, it must be linearized. By employing the
approximations that cos AS =1 and sin A8 = A3, the linearized version of (8.2-8) is

Afgs _ |cos 8, —sind, | [Afg N S AG (83-20)

r 3 (4 T
_A s ] _sm60 cosd, | _A s ] | 5o |

Linearizing the inverse transformation yields

Afgs _ cosd, sind, | |Afy N o A8 8321)

e o r __fe
_A s ] sind, cosd, _A s | /450 |

It is convenient to write the above equations in the form

Af, =TAf, +F AS (8.3-22)
Afpy = (D)7 Af, +FAS (8.3-23)

It is instructive to view the interconnections of the above relationships as
shown in Fig. 8.3-1. With the equations as shown in Fig. 8.3-1, a change in AVZ s
is reflected through the transformation to the voltage equations in the rotor
reference frame and finally back to the synchronously rotating reference-frame
currents Aigds. The detail shown in Fig. 8.3-1 is more than is generally necessary.
If, for example, the objective is to study the small-displacement dynamics of a
synchronous machine with its terminals connected to an infinite bus, then AVZ s
is zero and Av; ds changes due only to Aé. Also, in this case, it is unnecessary
to transform the rotor reference-frame currents to the synchronously rotating
reference frame since the source (infinite bus) has zero impedance.

If the machine is connected through a transmission line to a large system (infi-
nite bus), the small-displacement dynamics of the transmission system must be
taken into account. If only the machine is connected to the transmission line and
if it is not equipped with a voltage regulator, then it is convenient to transform
the equations of the transmission line to the rotor reference frame. In such a case,
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Figure 8.3-1 Interconnection of small-displacement equations of a synchronous
machine: Park’s equations.

the machine and transmission line can be considered in much the same way as a
machine connected to an infinite bus. If, however, the machine is equipped with a
voltage regulator or more than one machine is connected to the same transmission
line, it is generally preferable to express the dynamics of the transmission system
in the synchronously rotating reference frame and transform to and from the rotor
reference frame of each machine as depicted in Fig 8.3-1.

If the machine is equipped with a voltage regulator, the dynamic behavior of the
regulator will affect the dynamic characteristics of the machine. Therefore, the
small-displacement dynamics of the regulator must be taken into account. When
regulators are employed, the change in field voltage Ae’” is dynamically related to
the change in terminal voltage, which is a function of AVZ 45 (OF Av; 4> the change
in field current Ai]{ > and perhaps the change in rotor speed Aw,/w,, if the excita-
tion system is equipped with a control to help damp rotor oscillations by means of
field voltage control. This type of damping control is referred to as a power system
stabilizer (PSS).

In some investigations, it is necessary to incorporate the small-displacement
dynamics of the prime mover system. The change of input torque (negative load
torque) is a function of the change in rotor speed Aw,/w®,, which in turn is a
function of the dynamics of the masses, shafts, and damping associated with the
mechanical system and, if long-term transients are of interest, the steam or hydro
dynamics and associated controls.

Although a more detailed discussion of the dynamics of the excitation and
prime mover systems would be helpful, it is clear, from the above discussion,
that the equations which describe the operation and control of a synchronous
machine equipped with a voltage regulator and a prime mover system are very
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involved. This becomes readily apparent when it is necessary to arrange the
small-displacement equations of the complete system into the fundamental form.
Rather than performing this task by hand, it is preferable to take advantage of
analytical techniques that involve formulating the equations of each component
(machine, excitation system, prime mover system, etc.) in fundamental form.
A computer routine can be used to arrange the small-displacement equations
along with the interconnecting transformations of the complete system into the
fundamental form.

8.4 Small-Displacement Stability—Eigenvalues

With the linear differential equations written in state variable form, the u vector
represents the forcing functions. If u is set equal to zero, the general solution of
the homogeneous or force-free linear differential equations becomes [1]

x = eAK (8.4-1)

where K is a vector formed by an arbitrary set of initial conditions. The expo-
nential eA! represents the unforced response of the system. It is called the state
transition matrix. Small-displacement stability is assured if all elements of the
transition matrix approach zero asymptotically as time approaches infinity.
Asymptotic behavior of all elements of the matrix occurs whenever all of the
roots of the characteristic equation of A have negative real parts where the
characteristic equation of A is defined

det(A-AI)=0 (8.4-2)

In (8.4-2), I is the identity matrix and A are the roots of the characteristic
equation of A referred to as characteristic roots, latent roots, or eigenvalues.
Herein, we will use the latter designation. One should not confuse the A used here
to denote eigenvalues with the same notation used to denote flux linkages.

The eigenvalues provide a simple means of predicting the behavior of an
induction or synchronous machine at any balanced operating condition. Eigen-
values may be either real or complex and when complex they occur as conjugate
pairs signifying a mode of oscillation of the state variables. Negative real parts
correspond to state variables or oscillations of state variables, which decrease
exponentially with time. Positive real parts indicate an exponential increase with
time, an unstable condition.

8.5 Eigenvalues of Typical Induction Machines

The eigenvalues of an induction machine can be obtained by using a standard
eigenvalue computer routine to calculate the roots of A given by (8.3-17).
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Table 8.5-1 Induction Machine Eigenvalues.

Rating, hp Stall Rated speed No load

3 -4.57 +j377 —-85.6 +j313 -89.2 +j316
-313 +j 377 -223 +j83.9 -218 +j60.3
1.46 -16.8 -19.5

50 -2.02 +j 377 -49.4 + j356 -50.1 + j357
-198 + j377 -142 + j42.5 -140 + j18.2
1.18 -14.4 -17.0

500 -0.872 +j377 -41.8 +j374 -41.8 +j374
-70.3 +j377 -15.4 + j41.5 -14.3 +j42.8
0.397 -27.5 -29.6

2250 -0.428 + j377 -24.5 +j376 -24.6 +j376
-42.6 +j377 -9.36 + j41.7 -9.05 +j42.5
0.241 -17.9 -18.5

The eigenvalues given in Table 8.5-1 are for the machines listed in Table 3.9-1. The
induction machine, as we have perceived it, is described by five state variables
and hence five eigenvalues. Sets of eigenvalues for each machine at stall, rated,
and no-load speeds are given in Table 8.5-1 for rated frequency operation. Plots of
the eigenvalues (real part and only the positive imaginary part) for rotor speeds
from stall to synchronous are given in Figs. 8.5-1 and 8.5-2 for the 3- and 2250-hp
induction motors, respectively.

At stall, the two complex conjugate pairs of eigenvalues have a frequency
(imaginary part) corresponding to @,. The frequency of one complex conjugate
pair decreases as the speed increases from stall while the frequency of the other
complex conjugate pair remains at approximately w,, in fact, nearly equal to
w, for the larger horsepower machines. The eigenvalues are dependent on the
parameters of the machine, and it is difficult to relate analytically a change in an
eigenvalue with a change in a specific machine parameter. It is possible, however,
to identify an association between eigenvalues and the machine variables. For
example, the complex conjugate pair that remains at a frequency close to w, is
primarily associated with the transient offset currents in the stator windings,
which reflects into the synchronously rotating reference as a decaying 60 Hz vari-
ation. This complex conjugate pair, which is denoted as the “stator” eigenvalues
in Figs. 8.5-1 and 8.5-2, is not present when the electric transients are neglected in
the stator voltage equations. It follows that the transient response of the machine
is influenced by this complex conjugate eigenvalue pair whenever a disturbance
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Figure 8.5-1 Plot of eigenvalues for a 3-hp induction motor.

causes a transient offset in the stator currents. It is recalled that, in Chapter 3,
we noted a transient pulsation in the instantaneous torque of 60 Hz during free
acceleration and following a three-phase fault at the terminals with the machine
initially operating at near-rated conditions. We also noted that the pulsations were
more damped in the case of the smaller horsepower machines than for the larger
horsepower machines. It is noted in Table 8.5-1 that the magnitudes of the real
part of the complex eigenvalues with a frequency corresponding to w, are larger,
signifying more damping, for the smaller horsepower machine than for the larger
machines.

The complex conjugate pair that changes in frequency as the rotor speed
varies is associated primarily with the electric transients in the rotor circuits
and is denoted in Figs. 8.5-1 and 8.5-2 as the “rotor” eigenvalue. This complex
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Figure 8.5-2 Plot of eigenvalues for a 2250-hp induction motor.

conjugate pair is not present when the rotor electric transients are neglected.
The damping associated with this complex conjugate pair is less for the larger
horsepower machines than for the smaller machines. It is recalled that, during
free acceleration, the 3- and 50-hp machines approached synchronous speed
in a well-damped manner while the 500- and 2250-hp machines demonstrated
damped oscillations about synchronous speed. Similar behavior was noted as the
machines approached their final operating point following a load torque change
or a three-phase terminal fault. This behavior corresponds to that predicted by
this eigenvalue. It is interesting to note that this eigenvalue is reflected noticeably
in the rotor speed, whereas the higher-frequency “stator” eigenvalue is not.
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This, of course, is due to the fact that for a given inertia and torque amplitude, a
low-frequency torque component will cause a larger amplitude variation in rotor
speed than a high-frequency component.

The real eigenvalue signifies an exponential response. It would characterize the
behavior of the induction machine equations if all electric transients are mathe-
matically neglected or if, in the actual machine, the electric transients are highly
damped as in the case of the smaller horsepower machines. Perhaps, the most
interesting feature of this eigenvalue, which is denoted as the real eigenvalue in
Figs. 8.5-1 and 8.5-2, is that it can be related to the steady-state torque-speed curve.
If we think for a moment about the torque-speed characteristics, we realize that
an induction machine can operate stably only in the negative-slope portion of the
torque-speed curve. If we were to assume an operating point on the positive-slope
portion of the torque-speed curve, we would find that a small disturbance would
cause the machine to move away from this operating point, either accelerating to
the negative-slope region or decelerating to stall and perhaps reversing the direc-
tion of rotation depending on the nature of the load torque. A positive eigenvalue
signifies a system that would move away from an assumed operating point. Note
that this eigenvalue is positive over the positive-slope region of the torque-speed
curve, becoming negative after maximum steady-state torque.

8.6 Eigenvalues of Typical Synchronous Machines

The linearized transformations, (8.3-22) and (8.3-23), and the machine
equations (8.3-19) may each be considered components as shown in Fig. 8.3-1.
The eigenvalues of the two synchronous machines, each connected to an infinite
bus, studied in Section 5.9 are given in Table 8.6-1 for rated operation.

The complex conjugate pair with the frequency (imaginary part) approxi-
mately equal to w, is associated with the transient offset currents in the stator

Table 8.6-1 Synchronous Machine Eigenvalues for Rated

Conditions.
Hydro-turbine generator Steam-turbine generator
-3.58 +j377 -4.45 + j377
-133 +j8.68 -1.70 +j10.5
-24.4 -32.2
-22.9 -11.1
-0.453 -0.349

-0.855
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windings which cause the 60Hz pulsation in electromagnetic torque. This
pulsation in torque is evident in the computer traces of a three-phase fault at
the machine terminals shown in Figs. 5.9-8 and 5.9-10. Although operation
therein is initially at rated conditions, the three-phase fault and subsequent
switching cause the operating condition to change significantly from rated
conditions. Nevertheless, we note that the 60Hz pulsation is damped slightly
more in the case of the steam-turbine generators than in the case of the
hydro-turbine generator. Correspondingly, the relative values of the real parts
of the “stator” eigenvalues given in Table 8.6-1 indicate that the stator electric
transients of the steam unit are damped more than the stator transients of the
hydro unit.

The remaining complex conjugate pair is similar to the “rotor” eigenvalue in the
case of the induction machine. However, in the case of the synchronous machine,
this mode of oscillation is commonly referred to as the hunting or swing mode,
which is the principal mode of oscillation of the rotor of the machine relative
to the electrical angular velocity of the electrical system (the infinite bus in the
case of studies made in Chapter 5). This mode of oscillation is apparent in the
machine variables, especially the rotor speed, in Figs. 5.9-8 and 5.9-10 during the
“settling out” period following reclosing. As indicated by this complex conjugate
eigenvalue, the “settling out” rotor oscillation of the steam unit (Fig. 5.9-10) is
more damped and of higher frequency than the corresponding rotor oscillation of
the hydro unit.

The real eigenvalues are associated with the decay of the offset currents in
the rotor circuits and therefore associated with the inverse of the effective time
constant of these circuits. It follows that since the field winding has the largest
time constant it gives rise to the smallest of the real eigenvalues. In [1], it is shown
that the “stator” eigenvalue and the real eigenvalues do not change significantly
in value as the real and reactive power loading conditions change.

8.7 Detailed Voltage-Behind-Reactance Model

Many software packages exist to simulate the performance of electric machines
within power systems. Examples of state-variable-based solvers include ACSL [2],
Easy5 [3], Eurostag [4], and MATLAB/Simulink [5]. Specialized packages such as
SimPowerSystems [6], RT-Lab [7], PLECS [8], and ASMG [9] come with circuit
interfaces that enable relatively straightforward assembly of system models using
canonical branch circuits, such as the one shown in Fig. 8.10-1 [9].

The creation of such tools has enabled the simulation of complicated sys-
tems; however, their optimal use requires some thought as to model structure
and implementation. In Chapters 3, 5, and 6, a great deal of the focus is to
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Figure 8.7-1 Example canonical branch circuit element.

apply reference-frame theory to simplify the models of electric machinery by
eliminating rotor-position-dependent inductances. A key result of applying the
respective transformations are the g- and d-circuit representations of wound
rotor synchronous and induction machines shown in Figs. 5.3-1 and 3.4-1. Both
have constant inductances and are readily implemented within circuit simulators
using the branch element form of Fig. 8.7-1. However, when simulating systems
in which electric machines are coupled to power electronic circuits, a challenge
arises. Specifically, it is difficult to apply the reference-frame transformation
to the models of most power electronic circuits. As a result, coupling the g-
and d-model of a machine to a power electronic circuit represented in terms
of physical variables requires one to create a g- and d- to abc circuit interface.
A similar challenge is encountered in power system models in which a transmis-
sion line/network is represented in terms of phase quantities, as is common, for
example, in electromagnetic transient program EMTP-type solvers. In general, the
interface that is utilized is software dependent. For example, in PSCAD/EMTDC,
the machine model is coupled to the network model using a Norton current
source/impedance [10].

An alternative is to model a respective machine using a physical-variable
coupled-circuit (PVCC) form, i.e., machine variables. The PVCC model of
the induction machine is provided in (2.4-4) and (3.4-1). The PVCC model
of the synchronous machine is given by (2.4-4), (5.3-11)-(5.3-14), and
(5.3-18)-(5.3-21). An example of the use of the PVCC of the synchronous
machine is shown in Fig. 8.7-2, wherein a machine is coupled to a diode rectifier
using the branch elements of Fig. 8.7-1. Both the stator and rotor circuits are
represented using inductive branches. The stator branches are directly connected
to those of the diode circuit. The field winding branch is connected to a voltage
source. The damper windings are short circuited. The 6, in Fig. 8.7-2 is used
to denote that the coupling between windings is rotor-position-dependent. In
the case of a salient-pole synchronous machine, the stator inductances are also
rotor-position-dependent. Although the application of the PVCC model elimi-
nates the need to establish a g- and d- to abc coupling, the position-dependent
inductances and the additional branches/elements of the PVCC model add
computational cost.
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Figure 8.7-2 Machine/rectifier model using PVCC form.

Al

An alternative to the PVCC is a PVVBR formulation that was initially shown
to provide advantages in modeling synchronous machines in state-model-based
solvers in [11]. The PVVBR model was subsequently shown to have advantages in
EMTP-type solvers in [12]. In this section, the PVVBR model is derived. A similar
derivation is readily applied to the model of the induction machine and has been
documented in [13] and [14].

Prior to deriving the PVVBR model, a few details of notation are necessary.
A prime notation () is used to denote a rotor variable that had been referred to
the stator through an appropriate turns ratio. However, it is common in analyzing
synchronous machines, that a primed quantity is used to denote a time constant,
or inductance associated with the “transient” interval. This is used, for example,
in Chapters 5and 7. Along the same line, a double prime (") is often used to denote
a “subtransient” inductance or time constant. Subtransient inductances and time
constants are typically expressed assuming there are two damper windings in the
q axis and a single damper winding in the d axis. During the “subtransient” inter-
val, all damper windings are active. In this section, all rotor variables are indeed
referred to the stator quantities through the turn ratios defined in Chapter 5. How-
ever, since here we have introduced additional primed variables, the turn ratio
prime is dropped to avoid confusion and the double prime " is applied to denote a
dynamic inductance for a machine with arbitrary damper windings in each axis.
In the case in which a machine is modeled using a single damper in the d axis and
two in the g axis, the dynamic inductances are the traditional subtransient induc-
tances. Finally, since this model is often applied in drive system applications, we
take positive stator currents into the machine.

Interestingly, the derivation of the PVVBR for the synchronous machine begins
in the rotor frame of reference. Specifically, the g- and d-axis magnetizing flux
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linkages
M
Amg = Lag <igs + ikqj> (8.7-1)
j=1
N
=1

for a machine with M damper windings in the g-axis and N damper windings in
the d-axis are first expressed in terms of rotor flux linkages using the relationship

that
itg) = (g = Amg)/ Ly J = Kal..... kgM (8.7-3)
vy = iy = Ama)/Lug; = kd1, ... .kdN (8.7-4)
ifd = (lfd = lmd)/Llfd (8.7-5)
Substituting (8.7-3)—(8.7-5) into (8.7-1) and (8.7-2) with some rearrangement
results in
Amg = Lingite + Al (8.7-6)
Ama = Loy o+ A (8.7-7)
where
1w 1
L =4y — (8.7-8)
q
Ly Z:‘ Liygs
11w 1
L= =— 4t ) — (8.7-9)

Using (8.7-6) and (8.7-7), the stator flux linkages are then expressed as

ﬁ;s = Lgi;s + ﬁ;’ (8.7-10)
j’tris = L:i/icris + /1:; (8.7-11)

where Ly =L+ Ly, and L/ =L, +L" are the dynamic inductances. The
dynamic flux linkages are given by

M
W= Hra 8.7-12
q — “mq . )

j=1 leqj

2= @ + i Akdj (8.7-13)
d md Llfd j=1 ledj
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Using (8.7-10) and (8.7-11), the g- and d-axis stator voltage equations of (5.3-8) and
(5.3-9) can be written as

Vgs = Flgs + oo, (Liig + A7) +p (Lgigs + A7) (8.7-14)
Vi =1l — o, (Lyig + A7) +p (LI + 27) (8.7-15)
The terms
M .
rk ‘lk .
" _ ” qJ) "Kqj
Py ==Ly ¥, 2= (8.7-16)
j=1 lkqj
Vi~ b < Thajlia
pAy =Ly, - (8.7-17)
L L
I o Likgj

are then expressed in terms of stator current and rotor flux linkages by substitut-
ing (8.7-3)—(8.7-5) into (8.7-16) and (8.7-17) and applying the relation (8.7-6) and
(8.7-7) to the result. The stator voltage equations are then expressed in a form

v;S q qs + erg Zs +PLg gs ” (8.7-18)
Vi, = ryiy — o, Liig +pLyiy +e) (8.7-19)
where
M
" "2 Tkgj
e N (8.7-20)
J=1 leqj
N
ry =Ty +L”mdL2 +L"%, <Z > (8.7-21)
lfd Jj=1 lkd;

and

mq"kqj
= A + Z < (4 — /lkqj)) (8.7-22)

lkq j

L” L
akdj a'fd
_w /’{// Z < m ﬂ’/ —_ j’kd})) + Lfd Vfd + rlri (Ag - j’fd)
lkd] Ifd

(8.7-23)

Applying the inverse Park’s transformation to (8.7-18), (8.7-19), and the
zero-sequence voltage equation of (5.3-10) yields

Vaes = Foes (O Vhapes + D (L0 (0)igpes| + €Ll (8.7-24)
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where L, is an inductance matrix containing dynamic inductances defined as

2z 2z
L(26,) L (29, - ?) L (29, + ?)
L 0) =1 (26, 2) 1y (26,- ) L8, (8.7-25)
2z 4
L (29, + ?> L(26,) L (29, + ?)
The entries are expressed using - to denote 26,, 260, — = , 20, +Z respectlvely,
as
L{(-) =Ly + L] — L,/ cos(") (8.7-26)
//
Ly = —7 — L/ cos(") (8.7-27)
(LN + L// )
Ly = ——— (8.7-28)
(LH —L" )
md mq
Ly = e (8.7-29)
The resistance matrix is
r1(26,) (20, %) i (20,+ %)
a®) = 1, (20, - 2) 1 (20, - 42} rrc26) (8.7-30)
" <29, + %") r(26,) rg (29, + %”)
where the entries are defined as follows:
ry () =rg 41y —r] cos() (8.7-31)
o
() = —= —r/ cos(-) (8.7-32)

" 1"
" rd + rq 2

=t t-2 (8.7-33)
P

n_ d q

= (8.7-34)

The stator voltage equations given in (8.7-24), along with the rotor state equations

kqj

Phigj = (ﬂkqj Amghi J=1,---M (8.7-35)

Tidj lj

Phigj = (/lkd} Amd) s J=1,---N (8.7-36)
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-
fd

P = =7~y = Ama) + Vi (8.7-37)
Ifd

where 4,,, and 4,,4 are given by (8.7-6) and (8.7-7), define a detailed PVVBR
model of the synchronous machine. When implementing the PVVBR model,
the stator windings are included in defining the circuit topology using the
canonical branch circuit elements of Fig. 8.7-1. The rotor voltage equations are
expressed explicitly in state model form with flux linkages as state variables.
The subtransient voltages e; and e/ represent outputs of the rotor model and
are incorporated into the stator circuit as dependent sources. The stator branch
currents are transformed to the rotor reference frame and represent inputs to the
rotor state model. This is shown pictorially in Fig. 8.7-3.

A few comments are in order regarding the PVVBR model. First, the assump-
tions upon which the model is based are identical to those of the traditional
g- and d-model and the PVCC model. Thus, neglecting numerical error, the
responses predicted using all three models should be the same. In addition, no
assumptions have been made in regard to winding configuration. The windings
may be connected in wye, delta, or the individual windings may be supplied by
isolated converter circuits. Among the advantages, the PVVBR form has over a
PVCC form is the reduced computation burden, due to a reduction in the number
of nodes/branches required to characterize the stator windings. In addition,
the eigenstructure of the PVVBR yields improved numerical accuracy, which
is highlighted in [11] and explained in further detail in [12]. Of course, each
application and computer language presents its own challenges, and thus the
choice of the model structure, state variables, and reference frame often requires
experience and engineering judgment.
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Figure 8.7-3 Machine/rectifier model using the PVVBR model.
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Among the challenges that can be faced when implementing the PVVBR model
are the rotor-dependent resistances and inductances. The rotor-dependent resis-
tances can be eliminated by restructuring the model slightly. Specifically, the terms

M Tigj "2 Thaj zr ; e
(ijl o > Lyqigs and Ly Z] i, L72i" that are represented using resis

tances in (8.7-18) and (8. 7 19) can be 1ncorporated into the back-emf expressions
in any simulation packages that allow current-based voltage sources in series with
inductive branches. Doing so also eliminates resistive coupling between wind-
ings. An alternative, that has been applied in the derivation of average-value mod-
els of machine-rectifier systems [15], is to neglect the pAy and pA] in (8.7-14)
and (8.7-15). The justification is that the rotor flux linkages are relatively con-
stant over a switching interval. Particular care must be applied in making such
an approximation in that it has been shown in [16] that the resulting model can
be unstable.

Eliminating the rotor-dependent inductances represents a more unique
challenge and is related to the neglect of dynamic saliency in transient stability
formulations. In the PVVBR model, the rotor-position-dependent inductances
are eliminated if the assumption

L' = (o =Ena) 0 (8.7-38)

b~ 3 = .

is made. Determining mathematical bounds for the error resulting from such
an approximation is a tedious, if not intractable, task. In [17], the effect of
applying the approximation of (8.7-38) was considered in the frequency domain
by comparing the g- and d-axis operational impedance of the PVVBR models
with/without the approximation. Example results are shown in Fig. 8.7-4.
Comparing the impedances of the PVVBR and approximate PVVBR models
shows the frequency-domain errors associated with making the approximation
of (8.7-38). In particular, the curves are both shifted by |X:1, - X7 ‘ /2 over the
entire frequency range. An alternative to the approximation of (8.7-38) was
proposed in [17]. Therein, an additional damper winding is placed along the
q axis. The additional damper winding is used to fit machine parameters to
approximate impedance curves that have equal dynamic reactances but match
the original operational impedances for frequencies less than a user-specified
fit frequency, f,. The impact of doing so is shown in the frequency domain in
Fig. 8.7-5. In applying such an approximation, the user must balance between
error and numerical stiffness. Specifically, as f, is increased, the error between
the salient and nonsalient versions of the PVVBR model reduces. However, the
time constant associated with the additional damper winding increases. In [17],
it is shown that a reasonable balance between error and stiffness can be made
and that the resulting model yields much less error in the time-domain responses
compared to a model in which (8.7-38) is applied.



8.7 Detailed Voltage-Behind-Reactance Model

«— PVVBR
r T model with L, =0 |
© PVVBR approximation
> I " "
= model X, X)1
L 5 l |
5 L : L L L A
10° 102 10" 10 100 10> 10° ! 10*
«_PVVBR |
T model 0w
z PVVBR 1 Xy =Xy
> [ model with LZ =0 2 l -
approximation T

02 10?7 10" 10° 10 10* 100 10
Frequency (Hz)
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Figure 8.7-5 Operational impedance of PVVBR model and PVVBR model with auxiliary
damper winding to force L} = 0.
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A question that often arises is how to model saturation in the physical variable
models. Specifically, at first glance, it appears to be a challenge, since all stator
self and mutual inductances are impacted. A relatively straightforward method of
incorporating d-axis saturation within the PVVBR model has been shown in [18].
A more general approach in which saturation is modeled in both axis and transfer
functions to represent rotor dynamics is presented in [19].

8.8 Reduced-Order Voltage-Behind-Reactance Model

As indicated in Section 6.4, a common practice in modeling power systems
is to neglect electric transients of the stator voltage equations. The resulting
reduced-order model can be represented in a VBR model form. Specifically, by
expressing (6.4-1) and (6.4-2) in terms of dynamic inductances and flux linkages,
the reduced-order stator voltage equations can be written as

Vs = —Tilgs — 0 L1 +ef (8.8-1)

Vi = —rih + o, Lip + el (8.8-2)
where

¢ = w, ! (8.8-3)

¢ = —w ! (8.8-4)

Equations (8.8-1) and (8.8-2), together with the state equations of the rotor flux
linkages of (8.7-35)—(8.7-37) form a reduced-order VBR model. If the stator volt-
ages are expressed as

Vs = \/Evs cos 6 (8.8-5)
V= \/Evs sin & (8.8-6)

and the stator resistance neglected, an approximate expression for electro-
magnetic torque commonly used in transient stability analysis can be derived
using (8.8-1) and (8.8-2) to express stator current in terms of stator voltage and
using the result in the expression for torque (5.8-22). The approximate torque is
expressed as

Vave! Vave!
T—§£ - "4 cos S+ /quin6+<i—i>v

e 2 " /
4w Lq Ld
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Problems

8.1 Derive the small-displacement equations of an induction machine with
flux linkages per second as state variables. Express the equations in
fundamental form.

8.2 Repeat Problem 1 for a synchronous machine.

8.3 Write the small-displacement equations for an induction machine with
currents as state variables and with a small displacement in w, where Aw, is
an input variable. It is clear that the resulting equations are valid for small
changes in the frequency of the applied stator voltages.

8.4 Repeat Problem 3 for a synchronous machine.

8.5 Derive the PVVBR model of the three-phase induction machine.

8.6 Assume the stator windings of an induction machine are connected in wye.
Simplify the PVVBR model derived in Problem 5, using the fact that iy, = 0.

8.7 In the case of a three-phase synchronous machine, L, and L), are defined
with a 3/2 factor. This factor is unity in the case of the two-phase machine.
Why?
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Semi-Controlled Bridge Converters

9.1 Introduction

A brief analysis of single- and three-phase semi-controlled bridge converters is
presented in this chapter. This type of converter is also commonly referred to as
a line-commutated converter. The objective is to provide a basic background in
converter operation without becoming overly involved. For this reason, only the
constant-current operation is considered. A more detailed analysis of these and
other converters can be found in References 1-4. Finally, to set the stage for the
analysis of dc and ac drive systems in later chapters, an average-value model of the
three-phase semi-controlled bridge converter is derived. This model can be used to
predict the average-value performance during steady-state and transient operating
conditions.

9.2 Single-Phase Load Commutated Converter

A single-phase line-commutated full-bridge converter is shown in Figure 9.2-1.
The ac source voltage and current are denoted e,, and iy, respectively. The series
inductance (commutating inductance) is denoted [.. The thyristors are numbered
T1 through T4, and the associated gating or firing signals are denoted ey, through
er4- The converter output voltage and current are v, and i,. The following sim-
plifying assumptions are made in this analysis: (1) the ac source contains only
one frequency, (2) the output current i, is constant, (3) the thyristor is an infinite
impedance device when in the reverse bias mode (cathode positive) or when the
gating signal to allow current flow has not occurred, and (4) when conducting, the

voltage drop across the thyristor is negligibly small.

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/krause_aem4e
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Figure 9.2-1 Single-phase full-bridge converter.

Operation without Commutating Inductance or Firing Delay

It is convenient to analyze converter operation in steps starting with the simplest
case where the commutating inductance is not present and there is no firing
delay. In this case, it can be assumed that the gating signals are always present,
whereupon the thyristors will conduct whenever they become forward biased
(anode positive) just as if they were diodes. Converter operation for constant i,
with [, = 0 and without firing delay is depicted in Figure 9.2-2. The thyristor
in the upper part of the converter (T1 or T3) that conducts is the one with the
greatest anode voltage. Similarly, the thyristor that conducts in the lower part of
the converter (T2 or T4) is the one whose cathode voltage is the most negative. In
this case, the converter operates as a full-wave rectifier.

Let us begin our analysis assuming that the source voltage may be described by

e = V2Ecos0, (9.2-1)
where
Oy = wyt + g (9.2-2)

In (9.2-2), w, and ¢, are the radian frequency and phase of the source, respec-
tively. We wish to compute the steady-state average-value of v,, which is
defined as

— 1 4
Vi= Z/_”vddeg (9.2-3)

It is noted that the output voltage is made up of two identical = intervals per cycle
of the source voltage. For the interval —z/2 < 0, < x/2
Vg = ey (9.2-4)

Using symmetry and (9.2-1)-(9.2-4), the average output voltage may be deter-
mined by finding the average of (9.2-3) over the interval —z/2 < 0, < z/2. Thus,
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eq
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Figure 9.2-2 Single-phase, full-bridge converter operation for constant output current
without [, and firing delay.

the average-value of v; may be expressed

_ /2
Vi=Vg = %/ B V/2E cos 0,db,

- #B (9.2-5)

where E is the rms value of the source voltage. We will use V4, to denote the
average output voltage without commutation inductance and without firing delay.

235



236 | 9 Semi-Controlled Bridge Converters

Operation with Commutating Inductance and without Firing Delay

When [, is zero, the process of “current switching” from one thyristor to the
other in either the upper or lower part of the converter (T1to T3to T1to. ..,
etc.,and T2 to T4 to T2 to . . ., etc.) takes place instantaneously. Instantaneous
commutation cannot occur in practice since there is always some inductance
between the source and the converter. The operation of the converter with com-
mutating inductance and without firing delay is shown in Figure 9.2-3. During
commutation, the source is short-circuited simultaneously through T1 and T3
and through T2 and T4. Hence, if we consider the commutation from T1 to T3

ga

ipand iy
i3 and i4 \
Iy
107
l
|1
I
Vg l

Figure 9.2-3 Single-phase, full-bridge converter operation for constant output current
with [, and without firing delay.
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and T2 to T4 and if we assume that the short-circuit current during commutation
is positive through T3, then

di
=13
ega Cc dt

where i, is the current in thyristor T3. Substituting (9.2-1) into (9.2-6) and solving
for i, yields

iy = _ll / \/EEcos 8, dt
(¢
\V2E

a% ¢

At Og =7/2, iy =0, therefore

VaE

(9.2-6)

sinf, + C 9.2-7)

C= (9.2-8)
wgl,
whereupon
o V2E
iy = (1--sind,) (9.2-9)
@l §
At the end of commutation 6, = x/2 + y and iy = I;, therefore
2E
I; = \/_ (1 —cosy) (9.2-10)
Wyl,

where y is the commutation angle (Fig. 9.2-3). The uppercase (I;) is used to denote
constant or steady-state quantities. During commutation, the converter output
voltage v, is zero. Once commutation is completed, the short-circuit paths are
broken, and the output voltage jumps to the value of the source voltage since i,
and hence iga, are assumed constant after commutation. Since iga is constant, zero
voltage is dropped across the inductance [.. It is recalled that V, given by (9.2-5)
is the average converter output voltage when I, is zero. When [, is considered, the
output voltage is zero during commutation. Hence, the average output voltage
decreases due to commutation. The average converter output voltage may be
determined by
n/2
V,= % / \/EE cos 6,d0,
—/2+y

_ Vo
= — (1 +cosy) (9.2-11)
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If (9.2-10) is solved for cos y and the result substituted into (9.2-11), the average
converter output voltage with commutating inductance but without firing delay
becomes

Vy=Vyp— —1I; (9.2-12)

It is interesting to note that commutation appears as a voltage drop as if the con-
verter had an internal resistance of a)glc/ 7. However, this is not a resistance in the
sense that it does not dissipate energy.

Operation without Commutating Inductance and with Firing Delay

Thus far, we have considered the thyristor as a diode and hence have only con-
sidered rectifier operation of the converter. However, the thyristor will conduct
only if the anode voltage is positive and it has received a gating signal. Hence, the
conduction of a thyristor may be delayed after the anode has become positive by
delaying the gating signal (firing signal). Converter operation with firing delay but
without commutating inductance is shown in Figure 9.2-4.

We can determine the average output by

_ 1 /24
V,=- / V2E cos 6,d6,
T J-z)2+a
22
/4

——Ecosa

=Vycosa (9.2-13)
where « is the firing delay angle (Fig. 9.2-4). If the current is maintained constant,
the average output voltage will become negative for a greater than z/2. This is

referred to as inverter operation, wherein average power is being transferred from
the dc part of the circuit to the ac part of the circuit.

Operation with Commutating Inductance and Firing Delay

Converter operation with both commutating inductance and firing delay is
shown in Figure 9.2-5. The calculation of i, and V, are identical to that given by
(9.2-6)-(9.2-12), except that the intervals of evaluation are different. In particular,
(9.2-7) applies, but it is at 6, = 7/2 + a, where i; = 0, thus

\V2E

wgc

C=

cosa (9.2-14)

Commutation ends at Gg =7/2+ a + y, whereupon i, = I;, thus

\V2E

wgl,

I; = [cos @ — cos(a + )] (9.2-15)
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Figure 9.2-4 Single-phase, full-bridge converter operation for constant output current
with [, and firing delay.
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Figure 9.2-5 Single-phase, full-bridge converter operation for constant output current
with [, and firing delay.
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Figure 9.2-6 Average-value equivalent circuit for a Wyl
single-phase full-bridge converter. 1, T
+
Vaocosa v,
From (9.2-13)
/2+a
V= 1 \/EE cos 6,db,
b3
—/2+a+y
_ Vao
= T[COS a + cos(a + )] (9.2-16)

Solving (9.2-15) for cos (« + y) and substituting the results into (9.2-16) yields the
following expression for the average output voltage with commutating inductance
and firing delay.

— w,l,
Vy=Vycosa— —I; (9.2-17)
T

The equivalent circuit suggested by (9.2-17) is shown in Figure 9.2-6.

The average-value relations and corresponding equivalent circuit depicted
in Figure 9.2-6 were developed based upon the assumptions that (1) the rms
amplitude of the ac source voltage, E, is constant, and (2) the dc load current i,
is constant and hence denoted I,;. This equivalent circuit provides a reasonable
approximation of the average dc voltage even if E and i, vary with respect to time
provided that the variations from one conduction interval to the next are small.

Modes of Operation

Various modes of operation of a single-phase, full-bridge converter are illustrated
by simulation results in Figure 9.2-7, Figure 9.2-8, and Figure 9.2-9. The source
voltage is 280 V (rms) and the commutating inductance in 1.4 mH. In each case,
€oqs iga, iy, i3, Vg, and i, are plotted, where i; and i, are the currents through
thyristors T1 and T3, respectively. In Figure 9.2-7a, the converter is operating
with a series RL load connected across the output terminals, where R = 3Q and
L = 40 mH. In Figure 9.2-7a, the converter is operating without firing delay.
In Figure 9.2-7b, the firing delay angle is 45°. In Figure 9.2-7c, the firing delay
is slightly less than 90°; the current i; is discontinuous. The output current is
nearly constant when the converter is operating without firing delay due to the
large-load inductance.

In the case shown in Figure 9.2-8, the combination of a series RL (R = 3Q,
L =40 mH) connected in series with a constant 200-V source is connected across

241



242

9 Semi-Controlled Bridge Converters
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Figure 9.2-7 Single-phase, full-bridge converter operation with RL load. (a) « = 0°;
(b) @ = 45°; (c) @ ~ 90°, discontinuous operation.

the output terminals of the converter. The dc source is connected so that it
opposes a positive v,. In Figure 9.2-8a, the converter is operating without firing
delay, while in Figure 9.2-8b, the firing delay angle is 60°. During the zero-current
portion of operation, v, is equal to 200 V, the magnitude of the series-connected
dc source.

Inverter operation is depicted in Figure 9.2-9. In this case, the combination of
the RL load and dc source is still connected across the output terminals of the
converter, but the polarity of the dc source is reversed. In Figure 9.2-9a, the firing
delay angle is 108°. In Figure 9b, the firing delay angle is 126°.

Although (9.2-17) was derived for a constant output current, it is quite accurate
for determining the average values of converter voltage and current, especially
if the current is not discontinuous. The reader should take the time to compare
the calculated converter output voltage and current using (9.2-17) with the
average-values shown in Figure 9.2-7, Figure 9.2-8, and Figure 9.2-9, and to
qualitatively justify any differences that may occur.
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Figure 9.2-8 Single-phase, full-bridge converter operation with RL and an opposing dc
source connected in series across the converter terminals. (@) « = 0°; (b) « = 60°.
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9.3 Three-Phase Load Commutated Converter

A three-phase, line-commutated, full-bridge converter is shown in Figure 9.3-1.
The voltages of the three-phase, ac source are denoted e and e,., and the

ga’ gb’ gc’
phase currents i, iy,, and i.,. The ac source voltages may be expressed as

ag’
= V2E cos 0, (9.3-1)
= V2E cos <0g - 2—”) (9.3-2)
= \2E cos (9 + ?) (9.3-3)

where E is the rms magnitude of the source voltage, 0, is given by (9.2-2) and is
the angular position of the source voltages, and the source frequency is w, = p0,.
The ac side inductance (commutating inductance) is denoted as I.. The thyristors
are numbered T1 through T6 in the order in which they are turned on and the
gating or firing signals for the thyristors are e;, through e. The converter output
voltage and current are denoted v; and i, respectively. This circuit also includes a
dc inductor and resistor, L, and r,,, that may represent the armature inductance
and resistance of a dc machine or the inductance and resistance of a filtering cir-
cuit. Likewise, the voltage e; may represent the back emf of a dc machine or the
capacitor voltage in a dc filter.

Modes of Operation

Before analyzing the converter, it is instructive to consider several modes of
operation of a three-phase, full-bridge converter illustrated in Figure 9.3-2,
Figure 9.3-3, and Figure 9.3-4 by simulation results. The line-to-line ac source
voltage is 208 V (rms) and the commutating inductance is 45 yH. In each case,
[ iga = —iag, i}, I3, Vg, and i, are plotted where the currents i; and i, are the
currents through thyristors 71 and T3, respectively.

Figure 9.3-1 Three-phase full-bridge converter.
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Figure 9.3-2 Three-phase, full-bridge converter operation with RL load. () « = 0°;
(b) @ = 45°; () a = 90°.

In Figure 9.3-2, the converter is operating with r;, = 0.5Q, L;, = 1.33 mH, and
ey = 0. In Figure 9.3-2a, the converter is operating without firing delay. It is inter-
esting to note that the output current is nearly constant. In this study, there are
alternately two or three thyristors conducting; hence, this will be referred to as
2-3 mode, which is the normal mode of operation. The firing delay angle is 45° in
Figure 9.3-1b (again 2-3 mode) and 90° in Figure 9.3-1c where the output current
i, is discontinuous. Note, when i, is zero, v, is also zero. In this case, there are alter-
nately 2 and 0 thyristors conducting; hence, this will be referred to as 2-0 mode.

In the case depicted in Figure 9.3-3, the combination of a r;, = 50 mQ and
L,;. =133 yH is connected in series with a e; = 260 V dc source is connected across
the output terminals of the converter. In Figure 9.3-2a (2-3 mode), the converter is
operating without firing delay. In Figure 9.3-2b, the firing delay angle is 35°, and
the output current is discontinuous (2-0 Mode). Note that when i, is zero, v, is
260 V.

Inverter operation is illustrated in Figure 9.3-4. In this case, r;, = 50 mQ,
L,;. =133 pH, and e; = —260 V. In Figure 9.3-4a, the firing delay angle is 140°
(2-3 mode). The firing delay angle in Figure 9.3-4b is 160° where discontinuous
output current occurs (2-0 mode). Clearly, when i, is zero, v, is —260 V.

Note that while these studies depict 2-3 and 2-0 modes, other modes exist. In 3-3
mode, which we will consider later, there are always three thyristors conducting.
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Figure 9.3-3 Three-phase, full-bridge converter operation with RL and an opposing dc
source connected in series across the converter terminals. (a) @ = 0°; (b) & = 35°.

In 3-4 mode, which occurs under heavy rectifier loads, there are alternately three
and four thyristors conducting. In this case, the dc link becomes periodically
shorted as in the single-phase case.

Analysis and Average-Value Model

Unlike our work in Section 9.2, herein we use a qd framework for our analysis,
and include the derivation for the ac currents (represented in terms of gd
variables). The explicit consideration of a slowly varying i; will yield a dynamic
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Figure 9.3-4 Three-phase, full-bridge converter operation with RL and an aiding dc
source connected in series across the converter terminals. () a = 140°; (b) & = 160°.

average-value model of the load-commutated inverter that more accurately
predicts the average dc voltage during transients. The consideration of the average
g- and d-axis components of the ac source currents allows the model to be used
in a system context and to calculate the real, apparent, and/or reactive power
supplied by the ac source using expressions developed in Chapter 2. The use of
qd variables is desirable because by suitable choice of reference frame, the gd
state variables will be constant in the steady-state, which facilitates a variety
of analyses. The following simplifying assumptions are made herein: (1) the
three-phase source is balanced, (2) the current i; is varying slowly relative to the
converter switching frequency, (3) the thyristor is an infinite impedance device
when reverse biased or when the gating signal to allow current flow has not
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occurred, (4) when conducting the voltage drop across the thyristor is negligibly
small and (5) operation is in the 2-3 or 3-3 modes.

In order to put our work into a qd framework, let us transform the source
voltages (9.3-1)-(9.3-3) to qd variables using the reference-frame transformation.
In particular,

vgg Cag
V‘Cgld = vg = K‘g utr ebg (93'4)
dg e

@ 9

where the “g” superscript denotes a reference frame wherein 6 = 6, and “utr”
denotes upper two rows. This yields

v = V2E (9.3-5)
vig =0 (9.3-6)

A goal of the model herein will be to accept g- and d-voltages in an arbitrary
reference frame and then to find the currents in that same reference frame. For
g- and d-voltages in an arbitrary reference frame (emphasized with a super-
script “a” herein), in which (9.3-5) and (9.3-6) do not hold, we can utilize a
frame-to-frame transformation. In particular, if the g- and d-axis components of
the source voltages are given in the arbitrary reference frame, the transformation
into the reference frame wherein (9.3-6) and 23 hold may be deduced from the
frame-to-frame transformation

fg o = K (9.3-7)

where, from Chapter 3,

oK — [095 Oy, —sin ega] (9.3-8)
sinf,, cosb,,

and where f= [qud]T can be a voltage v or current i, and 0,, = 6, — 6, where 0, is
the position of the arbitrary reference frame. Manipulating (9.3-5) through (9.3-8),

0,, = —angle <ng - jvzg) 9:3-9)

2

E=-L/(ve)+ (vgg) (9.3-10)

where vg, and vgg are the g- and d-axis voltages to the left of the ac side inductor [,
in Figure 9.3-1.

The next step is to derive an expression for the average dc voltage. All dc side and
qd variables are periodic in z/3 of 6,. Thus, the average-values may be established

for any /3 interval of 6,. It is convenient to consider the #/3 interval that begins
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when T3 begins to conduct and ends when T4 begins to conduct. The average dc
voltage over this interval may be expressed

Zta
by == / (= v)df, (9.3-11)
T+

In (9.3-11), the “A” is used to denote the average-value during dynamical
conditions wherein the dc current iy and/or the amplitude of the ac voltages E are
allowed to vary, provided that the variation from one switching interval to the next
is relatively small. In other words, the averaging interval in (9.3-11) is assumed
to be small relative to the longer-term dynamics associated with the variations
in E and/or iy. Thus, (9.3-11) may be interpreted as the short-term average of v,.
Likewise, the short-term average of i; (average of i; over a z/3 interval) will be
denoted as i,. The firing delay angle a in (9.3-11) is defined such that T3 fires when

T
O,=3+a (9.3-12)

The average dc voltage indicated in (9.3-11) may be evaluated by noting from
Figure 9.3-1 that

dig,

Vas = ega + lc? (9.3-13)
dipg

Vps = €gp + Lo (9.3-14)
di

Ves = € + lCd—Ctg (9.3-15)

Substituting (9.3-13)-(9.3-15) into (9.3-11) yields
%”#—a

~ 3 3 S
by = —/” (egp — €g)d0, + ;lca)g(lbg = leg)

T Jz
3+a

Zta

: (9.3-16)

z
3+ot

Substituting (9.3-2) and (9.3-3) into (9.3-16) and simplifying yields

3v/6

. 3 N
Vg = ——Ecosa+ =lw,(ip, —ig) |7
T T

§+a

" (9.3-17)

Further simplification can be obtained by observing that prior to the instant
when T3 begins to conduct, only T1 and T2 are conducting. Therefore,

. N AT
Lopeg 0=+ =[-iy 0 i4l (9.3-18)

Similarly, immediately prior to the instant when T4 begins to conduct, only 72
and T3 are on, therefore

. ~ ~ 2 ~qT
Yabeg|y _2e,, = [0 —ig— Ay ig+ Azd] (9.3-19)
83
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In 9.3-19, Afd represents the change in average dc current over the given con-
duction interval due to long-term dynamics. It follows from this definition that
the derivative of the dynamic-average rectifier current may be approximated as

diy, Al

—_—=— 9.3-20

dt z/3 Ve ( )
Substituting (9.3-18)-(9.3-20) into (9.3-17) and simplifying yields

. 3ve 3.0, dy

by = TE cosa — ;lcwgld - Zlca (9.3-21)
From Figure 9.3-1, 9, can be related to i, and e, using

S iy

Vg =rgly+ LdCE +ey (9.3-22)
Combining (9.3-21) and (9.3-22) yields

3y6 3 g
di, \T[E cosa — (rdc + ;lca)g> Iy — ey
Ay _ (9.3-23)

dr Ly +21.
To establish the average g- and d-axis components of the ac currents, it is
assumed that the rectifier current is constant throughout the interval and equal to
fd. It is convenient to divide the interval into two subintervals; the commutation
interval during which the current is transferred from T1 to T3, and the conduction
interval during which only T2 and T3 are conducting. During the commutation
interval, T1, T2, and T3 are conducting. Therefore, the current into the ac source
must be of the form

s . 2 . 2T
Lapeg = [lag —lg — lgg ld] (9.3-24)

and
Vas = Vpe =0 (9.3-25)

Algebraically manipulating (9.2-2), (9.3-1), (9.3-2), (9.3-13), (9.3-14), (9.3-24),
and (9.3-25), it is possible to show that

-
e (0,-%)

- 9326
it~ 2w, (9.3-26)

From (9.3-26) and noting that at 0, = « + x/3, we have that i, = —1i,, we conclude
that

6
E [cosa — cos (Hg - E)] (9.3-27)
cg 3
The commutation subinterval ends when the current in 71, which is the a-phase
current, becomes zero. The angle from the time T3 is turned on and T1 is turned

i4g(0g) = —ig + 5
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off is known as the commutation angle y. It can be found by setting (9.3-27) equal
to zero. In particular,

2lca)gfd
y = —a +arccos | cosa — (9.3-28)
\V/6E

For (9.3-27) to be applicable, several conditions need to be met. First, for (9.3-28)
to be defined
2l w1
cosa— ——2%1 <1 (9.3-29)
\/6E

However, this is not the only condition which must be met. Note that T3 turns on
at
T
Oy=3 +a (9.3-30)
For T3 to turn on, the time derivative of iag must be positive, so that the current in
T3 will increase. Substitution of (9.3-30) into (9.3-26), we conclude

a>0 (9.3-31)
Similarly, the end of commutation occurs at
T
Op=<+a+y (9.3-32)
3
For commutation to complete, the time derivative of i,, must be positive at the

end of commutation as well. Substitution of (9.3-32) into (9.3-26) and requiring
the time derivative to be positive,

a+y<rm (9.3-33)

This requirement is particularly relevant to inverter operation in which « is large.
Finally, for 2-3 mode, we must have

y < % (9.3-34)

Because of these restrictions, it is useful to differentiate between the actual firing
delay a and the intended (or commanded) firing delay angle «". Suppose we take
a = o in our analysis (9.3-28)—(9.3-34). If all constraints are met, then this is
indeed the case. If the constraints are not met, then the converter is either in
another mode or is not operating properly (and is, e.g., experiencing commutation
failures). While our approach is not valid for these other modes, we can extend
it to 3-3 mode. In this mode, the commutation angle is exactly z/3, and the firing
delay is increased from the intended value to the value that corresponds to the
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aforementioned commutation angle. Setting y = z/3 in (9.3-28) and solving for
the firing angle

2l w 1
a=2Z —arccos ¢ 2d (9.3-35)
3 V6E

Note that mathematically, there is another solution with a change of sign on the
arccos() term; however, this alternate solution does not make sense physically
since such a solution would yield a firing delay that decreases with increasing i,.
Note that for (9.3-35) to be valid,

2lw,i
1 Zed (9.3-36)
2 \J6E
or a will be negative or the argument to the arccos() function will be out of range.
Summarizing, these results, we have

a* valid 2-3 mode

a= 200,14 (9.3-37)
% —arccos [ ——— valid 3-3 mode
6EF

In other words, if we assume « = «" and it yields valid 2-3 mode of operation,
then indeed a = o’. If this does not yield valid operation, then we can find « from
(9.3-35). If this yields valid 3-3 mode, then this is the firing delay. If neither assump-
tion yields a valid result, the operation is in another mode (e.g., 3-4 mode, wherein
the converter operates between three and four thyristors on) or the converter is not
operating in a periodic fashion.

The next step in our analysis is to determine an expression for the ac side
currents. The average g- and d-axis components can be established using

2z
# 23 ["% 00 9.3-38
lgg=— [  lgg(0p)d0, (9.3-38)
3ta
Tt
€ _ 3 3 .g
lg = = / H0de, (9.3-39)
3

Since the expressions for the ac currents are different during the conduction
interval than in the commutation interval, it is convenient to break up (9.3-38)
and (9.3-39) into components corresponding to these two intervals. In particular,

g _ 8

8
lag = lag.com + lgg.cond (9.3-40)
8 ~8 ~8
ldg = ldg,com + ldg,cond (9'3_41)
where
Ztaty
g 3 /3 g
fgg.com = T [ Iqg(0)d0, (9.3-42)

x
3+(1
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g 3 2?’r+ot
lggcond = — / i50(0,)d0, (9.3-43)
Tty
Ztaty
g 3 3 .
ldgcom = _/ lﬁg(eg)deg (93-44)
n %-Hx
Zta
8 3 3.
ligcond = = / i5,(0,)d0, (9.3-45)
T THaty

The commutation component of the current may be found by substituting
(9.3-27) into (9.3-24), applying the reference-frame transformation (3.3-1) with
6 = 6,, and integrating in accordance with (9.3-42) and (9.3-44). After considerable

manipulation,
g 3. S . Sz
lgcom= d[sm(y+a—?>—sm<a—?>]
§ cos a[cos(y + a) — cos(a)]
T lca)g
2E
13 \/_ [cos 2a — cos(a + 2y)] (9.3-46)
4z lo,
u 243,
if;g,com = T\/_ld [ cos (y +a-— %) + cos <a - %ﬂ)]
E
3 cos afsin(y + a) — sin(a)]
T lca)g
2E
+ 13 \/_ [sin 2« — sin(a + 2y)] — 3 \/— 1 (9.3-47)
47 low, T Lo, 27

To compute the conduction component of the average currents, note that after
commutation, the a-phase current remains at zero; therefore

abcg [0 _ld ld] !

(9.3-48)

Transforming (9.3-48) to the 0 = 0, reference frame and utilizing (9.3-43) and

(9.3-45),
~ 24/3.,
iﬁg,cond = _\/_id [Sin <a + %T) —sin (a +7r+ %)] (9.3-49)
" 24/3.,
iig’wnd = %—id [— cos (a + %Z) + cos (a +y+ %)] (9.3-50)
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Figure 9.3-5 Average-value model of three-phase full-bridge converter.

At this point, the total g- and d-axis current may be found using (9.3-40) and
(9.3-41). The resulting currents can then be transformed back to the desired
reference frame using

i = *Ki}, = FKY i, (9.3-51)

The relationships between the previous equations are conveniently sum-
marized in the block diagram illustrated in Figure 9.3-5, which represents an
average-value model of the load commutated converter. The inputs to this model
include the commanded firing delay «", the g- and d-axis components of the
source voltage in the arbitrary reference frame, and the dc source voltage e,. The
outputs of the model include the dynamic-average of the rectifier current i, and
the dynamic-average of the g- and d-axis components of the ac currents in the
arbitrary reference frame.

To illustrate the dynamic response that is established using the average-value
model, it is assumed that the rated line-to-line source voltage is 208 V (rms).
The commutating inductance [, is 45 yH. Also, ry. = 0.5, L;, = 1.33mH, and
ey = 0. In the following study, the dc and ac currents are initially zero, and rated
voltages are suddenly applied at t = 0 with the firing delay angle « set to zero.
The dynamic response is shown in Figure 9.3-6, wherein the following variables
are plotted: i;—the dc current, if';g—the g-axis component of the ac current, and
iig—the d-axis component of the ac current. The ac currents are expressed in the
reference frame wherein vig = 0. The variables indicated with an “A” correspond
to the average-value model in Figure 9.3-5, while those that do not include the “A”
correspond to the actual response. At the instant of time indicated in Figure 9.3-6,
the firing delay angle is stepped to 45°. As shown, the average-value model
accurately portrays the dynamic-average dynamic response for the given study.
The steady-state waveforms for « = 0 and a = 45° are shown in Figure 9.3-2a,b,
respectively.
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Figure 9.3-6 Comparison of average-value dynamic response with actual response.

9.4 Conclusions and Extensions

The focus of this chapter has been the development of average-value and dynamic
average-value models of line-commutated converters connected to an ideal
source. A natural extension of this work is the consideration of the connection of
line-commutated converters to synchronous machines. One approach to doing
this is set forth in References 5 and 6. An extension of the methodology to a
six-phase rectifier connected to a sic-phase machine is set forth in Reference 7.
In Reference 8, a method of determining instantaneous waveforms from an
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average-value model is considered using a procedure referred to as waveform
reconstruction. Throughout this work, it was assumed that enough dc link
inductance was included so that the dc current could be considered constant. An
analysis of line-commutated converter systems in which no dc-link is present
is set forth in Reference 9. Finally, it is appropriate to consider methods for the
detailed simulation of line-commutated inverters. While the literature is rich in
this subject, a particularly computationally efficient methodology is set forth in
Reference 10.

References

1 C. Adamson and N. G. Hingarani, High Voltage Direct Current Power
Transmission, Garroway Limited, London, 1960.

2 E. W. Kimbark, Direct Current Transmission—Vol. 1, John Wiley and Sons,
New York, 1971.

3 S. B. Dewan and A. Straughen, Power Semiconductor Circuits, John Wiley and
Sons, New York, 1975.

4 P. Wood, Switching Power Converters, Van Nostrand Reinhold Co., New York,
1981.

5 S. D. Sudhoff and O. Wasynczuk, “Analysis and Average-Value Modeling of
Line-Commutated Converter—Synchronous Machine Systems,” IEEE Trans.
Energy Conversion, Vol. 8, No. 1, March 1993, pp. 92-99.

6 S. D. Sudhoff, K. A. Corzine, H. J. Hegner, and D. E. Delisle, “Tran-
sient and Dynamic Average-Value Modeling of Synchronous Machine Fed
Load-Commutated Converters,” IEEE Trans. Energy Conversion, Vol. 11, No. 3,
September 1996, pp. 508-514.

7 S. D. Sudhoff, “Analysis and Average-Value Modeling of Dual
Line-Commutated Converter—6-Phase Synchronous Machine Systems,” IEEE
Trans. Energy Conversion, Vol. 8, No. 3, September 1993, pp. 411-417.

8 S. D. Sudhoff, “Waveform Reconstruction in the Average-Value Modeling of
Line-Commutated Converter—Synchronous Machine Systems,” IEEE Trans.
Energy Conversion, Vol. 8, No. 3, September 1993, pp. 404-410.

9 J. T. Alt, S. D. Sudhoff, and B. E. Ladd, “Analysis and Average-Value Modeling
of an Inductorless Synchronous Machine Load Commutated Converter
System,” IEEE Trans. Energy Conversion, Vol. 14, No. 1, March 1999,
pp. 37-43.

10 O. Wasynczuk and S. D. Sudhoff, “Automated State Model Generation
Algorithm for Power Circuits and Systems,” IEEE Trans. Power Systems,
Vol. 11, No. 4, November 1996, pp. 1951-1956.

257



258

9 Semi-Controlled Bridge Converters

Problems

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

Using the average-value equations derived in Section 9.2, calculate the aver-
age dc voltage and current for each of the conditions in Figure 9.2-7. Com-
pare with the average-values plotted in Figure 9.2-7.

Using the average-value equations derived in Section 9.3, calculate the aver-
age dc voltage and current for each of the conditions in Figure 9.3-2. Com-
pare with the average-values plotted in Figure 9.3-2.

Assume that the ac source voltage applied to the three-phase load com-
mutated converter have an ach phase sequence. Indicate the sequence in
which the thyristors should be fired.

Derive (9.3-9) and (9.3-10).

Starting with (9.3-26) obtain (9.3-27).

Using (9.3-26) and (9.3-32), infer (9.3-33).

Perform the detailed mathematical manipulation needed to obtain (9.3-46).
Perform the detailed mathematical manipulation needed to obtain (9.3-47).

Perform the detailed mathematical manipulation needed to obtain (9.3-49).

Perform the detailed mathematical manipulation needed to obtain (9.3-50).
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Fully Controlled Three-Phase Bridge Converters

10.1 Introduction

In our study of induction, synchronous, and permanent-magnet ac machines, we
set forth control strategies that assumed the machine was driven by a three-phase,
variable-frequency voltage or current source without mention of how such a
source is actually obtained, or what its characteristics might be. In this chapter,
the operation of a three-phase fully controlled bridge converter is set forth. It
is shown that by suitable control, this device can be used to achieve either a
three-phase controllable voltage source or a three-phase controllable current
source, as was assumed to exist in previous chapters.

10.2 The Three-Phase Bridge Converter

The converter topology that serves as the basis for many three-phase variable
speed drive systems is shown in Figure 10.2-1. This type of converter is comprised
of six controllable switches labeled T1-T6. Physically, bipolar junction tran-
sistors (BJTs), metal-oxide-semiconductor field-effect transistors (MOSFETS),
insulated-gate bipolar junction transistors (IGBTs), and MOS controlled thyristors
(MCTs) are just a few of the devices that can be used as switches. Across each
switch is an antiparallel diode used to ensure that there is a path for inductive
current in the event that a switch which would normally conduct current of that
polarity is turned off. This type of converter is often referred to as an inverter
when power flow is from the dc system to the ac system. If power flow is from the
ac system to the dc system, which is also possible, the converter is often referred
to as an active rectifier.

In Figure 10.2-1, v,;. denotes the dc voltage applied to the converter bridge,
and i, designates the dc current flowing into the bridge. The bridge is divided

Analysis of Electric Machinery and Drive Systems, Fourth Edition.
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Figure 10.2-1 The three-phase bridge converter topology.

Vi,

into three legs, one for each phase of the load. The line-to-ground voltage of the
a-, b-, and c-phase legs of the converter are denoted Vag> Vbgs and Veg respectively. In
this text, the load current will generally be the stator current into a synchronous,
induction, or permanent-magnet ac machine; therefore, i, i, and i , are used
to represent the current into each phase of the load. Finally, the dc currents from
the upper rail into the top of each phase leg are designated i ., i,4,, and i.4,.

To understand the operation of this basic topology, it must first be understood
that none of the semiconductor devices shown are ever intentionally operated in
the active region of their i—v characteristics. Their operating point is either in the
saturated region (on) or in the cutoff region (off). If the devices were operated in
their active region, then by applying a suitable gate voltage to each device, the
line-to-ground voltage of each leg could be continuously varied from 0 to v,,. At
first, such control appears advantageous, since each leg of the converter could be
used as a controllable voltage source. The disadvantage of this strategy is that, if
the switching devices are allowed to operate in their active region, there will be
both a voltage across and current through each semiconductor device, resulting
in power loss. On the other hand, if each semiconductor is either on or off, then
either there is a current through the device but no voltage, or a voltage across the
device but no current. Neither case results in power loss. Of course, in a real device,
there will be some power losses due to the small voltage drop that occurs even
when the device is in saturation (on), and due to losses that are associated with
turning the switching devices on or off (switching losses); nevertheless, inverter
efficiencies greater than 95% are readily obtained.
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In this study of the operation of the converter bridge, it will be assumed that
either the upper switch or lower switch of each leg is gated on, except during
switching transients (the result of turning one switch on while turning another
off). Ideally, the leg-to-ground voltage of a given phase will be v,, if the upper
switch is on and the lower switch is turned off, or 0 if the lower switch is turned
on and the upper switch is off. This assumption is often useful for analysis pur-
poses, as well as for time-domain simulation of systems, in which the dc supply
voltage is much greater than the semiconductor voltage drops. If a more detailed
analysis or simulation is desired (and hence the voltage drops across the semicon-
ductors are not neglected), then the line-to-ground voltage is determined both by
the switching devices turned on and the phase current.

To illustrate this, consider the diagram of one leg of the bridge as is shown
in Figure 10.2-2. Therein, x can be a, b, or ¢, to represent the a-, b-, or c-phase,
respectively. Figure 10.2-3a illustrates the effective equivalent circuit shown in
Figure 10.2-2 if the upper transistor is on and the current i, is positive. For this
condition, it can be seen that the line-to-ground voltage v,, will be equal to the
dc supply voltage v, less the voltage drop across the switch v,. The voltage drop
across the switch is generally in the range of 0.7-3.0 V. Although the voltage drop
is actually a function of the switch current, it can often be represented as a con-
stant. From Figure 10.2-3a, the dc current into the bridge, i ;., is equal to the phase
current i .

If the upper transistor is on and the phase current is negative, then the equiv-
alent circuit is as shown in Figure 10.2-3b. In this case, the dc current into the
leg i, is again equal to the phase current i,. However, since the current is now
flowing through the diode, the line-to-ground voltage v, is equal to the dc supply
voltage v,. plus the diode forward voltage drop v,. If the upper switch is on and the
phase current is zero, it seems reasonable to assume that the line-to-ground volt-
age is equal to the supply voltage as indicated in Figure 10.2-3c. Although other

’ Y

I

dc —>

Figure 10.2-2 One phase leg.

Ixde

Vv,
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Ixde = lxs

i,>0
Vde +
Vd vy,
(d)
+ixdc =0
iy>0
+
Vd vy,
(2 (h) ®

Figure 10.2-3 Phase leg equivalent circuits. (a) Upper switch on; i, > 0. (b) Upper
switch on; i, < 0. (c) Upper switch on; i, = 0. (d) Lower switch on; i, > 0. (e) Lower

s '
switch on; i, < 0. (f) Lower switch on; i, = 0. (g) Neither switch on; i, > 0.

(h) Neither switch on; i, < O. (i) Neither switch on; /.. = 0.
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estimates could be argued (such as averaging the voltage from the positive and
negative current conditions), it must be remembered that this is a rare condition,
so a small inaccuracy will not have a perceptible effect on the results.

The positive, negative, and zero current equivalent circuits, which represent the
phase leg when the lower switching device is on and the upper switching device
is off, are illustrated in Figure 10.2-3d,e,f, respectively. The situation is entirely
analogous to the case in which the upper switch is on.

One final possibility is the case in which neither transistor is turned on. As stated
previously, it is assumed that in the drives considered herein, either the upper
or lower transistor is turned on. However, there is a delay between the time a
switch is commanded to turn off and the time it actually turns off, as well as a
delay between the time a switch is commanded to turn on and the time it actually
turns on. Sophisticated semiconductor device models are required to predict the
exact voltage and current waveforms associated with the turn-on and turn-off tran-
sients of the switching devices [1-5]. However, as an approximate representation,
it can be assumed that a device turns on with a delay T,, after the control logic
commands it to turn on, and turns off after a delay T, after the control logic com-
mands it to turn off. The turn-off time is generally longer than the turn-on time.
Unless the turn-on time and turn-off time are identical, there will be an interval in
which either no device in a leg is turned on or both devices in a leg are turned on.
The latter possibility is known as “shoot-through” and is extremely undesirable;
therefore, an extra delay is incorporated into the control logic such that the device
being turned off will do so before the complementary device is turned on (see
Problem 10). Therefore, it may be necessary to represent the condition in which
neither device of a leg is turned on.

If neither device of a phase leg is turned on and the current is positive, then
the situation is as in Figure 10.2-3g. Since neither switching device is conducting,
the current must flow through the lower diode. Thus, the line-to-ground voltage
vy, is equal to —v,; and the dc current into the leg i, is zero. Conversely, if the
phase current is negative, then the upper diode must conduct as is indicated in
Figure 10.2-3h. In this case, the line-to-ground voltage is v, + v, and the dc current
into the leg i, ;. is equal to phase current into the load i . In the event that neither
transistor is on, and that the phase current into the load is zero, it is difficult to
identify what the line-to-ground voltage will be since it will become a function of
the back emf of the machine to which the converter is connected. If, however, it is
assumed that the period during which neither switching device is gated on is brief
(on the order of a microsecond), then assuming that the line-to-ground voltage
is v4./2 is an acceptable approximation. Note that this approximation cannot be
used if the period during which neither switching device is gated on is extended.
An example of the type of analysis that must be conducted if both the upper and
lower switching devices are off for an extended period appears in References [6-8].
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Table 10.2-1  Converter Voltages and Currents.

Switch On Current Polarity Vig i e
Upper Positive Ve = Vo Iy
Negative Vg Vg i
Zero Vi Ly
Lower Positive -V, 0
Negative Vg, 0
Zero 0 0
Neither Positive -V, 0
Negative Ve V4 Iy
Zero Vg /2 0

Table 10.2-1 summarizes the calculation of line-to-ground voltage and dc
current into each leg of the bridge for each possible condition. Once each of the
line-to-ground voltages are found, the line-to-line voltages may be calculated. In

particular,

Vabs = Vag ~ Vg

Vbes = Vbg = Veg

Veas = Veg — Vgg

and from Figure 10.2-1, the total dc current into the bridge is given by

lae = lade + Lbde + Lede

(10.2-1)
(10.2-2)
(10.2-3)

(10.2-4)

Since machines are often wye-connected, it is useful to derive equations for the
line-to-neutral voltages produced by the three-phase bridge. If the converter of
Figure 10.2-1 is connected to a wye-connected load, then the line-to-ground volt-
ages are related to the line-to-neutral voltages and the neutral-to-ground voltage by

Vag = Vos + Vg
Vpg = Vps + Ve
Veg = Vg + Vo

Summing (10.2-5)-(10.2-7) and rearranging yields

ng

1 1
v, = g(Vag + Ve + ch) - g(Vas + Vg + V)

(10.2-5)
(10.2-6)
(10.2-7)

(10.2-8)
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The final term in (10.2-8) is recognized as the zero-sequence voltage of the
machine, thus

1
Ve = g(Vag + Vg + Veg) — Vo (10.2-9)

For a balanced, wye-connected machine, such as a synchronous machine,
induction machine, or permanent-magnet ac machine, summing the line-
to-neutral voltage equations indicates that the zero-sequence voltage is zero.
However, if the machine is unbalanced, this would not be the case. Another
practical example of a case in which the zero-sequence voltage is not identically
equal to zero is a permanent-magnet ac machine with a square-wave or trape-
zoidal back emf, in which case the sum of the three-phase back emfs is not zero.
However, for the machines considered in this text in which the zero-sequence
voltage must be zero, (10.2-9) reduces to

1
Ve = g(Vag + Vpg + V) (10.2-10)
Substitution of (10.2-10) into (10.2-5)-(10.2-7) and solving for the line-to-neutral
voltages yields
2 1 1
Vas = 3Vag = 3V ~ 3V (10.2-11)
2 1 1
Vps = ZVbg ~ 3Vag ~ 3V (10.2-12)
2 1 1
Ves = ZVeg ~ 3Vag ~ 3V (10.2-13)

10.3 Six-Step Operation

In the previous section, the basic voltage and current relationships needed to ana-
lyze the three-phase bridge were set forth with no discussion as to how the bridge
would enable operation of a three-phase ac machine from a dc supply. In this
section, a basic method of accomplishing the dc to ac power conversion is set
forth. This method will be referred to as six-step operation, and is also commonly
referred to as 180° voltage-source operation. In this mode of operation, the con-
verter appears as a three-phase voltage source to the ac system, and so six-step
operation is classified as a voltage-source control scheme.

The operation of a six-stepped three-phase bridge is shown in Figure 10.3-1.
Therein, the first three traces illustrate switching signals applied to the power
electronic devices, which are a function of 8, the converter angle. The definition
of the converter angle is dependent upon the type of machine the given converter
is driving. For the present, the converter angle can be taken to be w.t, where ¢
is time and w, is the radian frequency of the three-phase output. In subsequent
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Figure 10.3-1 Line-to-line voltages for six-step operation.
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chapters, the converter angle will be related to the electrical rotor position or the
position of the synchronous reference frame depending upon the type of machine.
Referring to Figure 10.3-1, the logical complement of the switching command to
the lower device of each leg is shown for convenience, since this signal is equal
to the switch command of the upper device if switching times are neglected. For
purposes of explanation, it is further assumed that the diode and switching devices
are ideal—that is, that they are perfect conductors when turned on or perfect
insulators when turned off. With these assumptions, the line-to-ground voltages
are as shown in the central three traces of Figure 10.3-1. From the line-to-ground
voltages, the line-to-line voltages may be calculated from (10.2-1)-(10.2-3),
which are illustrated in the final three traces. Since the waveforms are square
waves rather than sine waves, the three-phase bridge produces considerable
harmonic content in the ac output when operated in this fashion. In particular,
using Fourier series techniques, the a- to b-phase line-to-line voltage may be
expressed as

2V/3

24/3 T
Vops = — V4. COS (6, + 3 + — Vye

(,-: <—6j1_1 cos <(6j—1) (ac+ %)) + 6},11 cos <(6j+1) (ec+ %))))

(10.3-1)

From (10.3-1), it can be seen that the line-to-line voltage contains a fundamen-
tal component, as well as the 5th, 7th, 9th, 11th, 13th, 17th, 19th ... harmonic
components. There are no even harmonics or odd harmonics that are a multi-
ple of three. The effect of harmonics depends on the machine. In the case of a
permanent-magnet ac machine with a sinusoidal back emf, the harmonics will
result in torque harmonics but will not have any effect on the average torque. In the
case of the induction motor, torque harmonics will again result; however, in this
case the average torque will be affected. In particular, it can be shown that the 6j — 1
harmonics form an acb sequence that will reduce the average torque, while the
6j + 1 harmonics form an abc sequence that increases the average torque. The net
result is usually a small decrease in average torque. In all cases, harmonics will
result in increased machine losses.

Figure 10.3-2 again illustrates six-stepped operation, except that the formula-
tion of the line-to-neutral voltages is considered. From the line-to-ground voltage,
the neutral-to-ground voltage v,, is calculated using (10.2-10). The line-to-neutral
voltages are calculated using the line-to-ground voltages and line-to-neutral volt-
age from (10.2-5)-(10.2-7). From Figure 10.3-2, the a-phase line-to-neutral voltage
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Figure 10.3-2 Line-to-neutral voltage for six-step operation.
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may be expressed as a Fourier series of the form

= -1y
< & - COS((6j -1, + G+ 1

2 2 .
Vas = —Vq, COS 0.+ ;vdcz cos((6j + 1)66)>
J=1

(10.3-2)

Relative to the fundamental component, each harmonic component of the
line-to-neutral voltage waveform has the same amplitude as in the line-to-line
voltage. The frequency spectrum of both the line-to-line and line-to-neutral
voltages is illustrated in Figure 10.3-3.

The effect of these harmonics on the current waveforms is illustrated in
Figure 10.3-4. In this study, a three-phase bridge supplies a wye-connected load
consisting of a 2-Q resistor in series with a 1-mH inductor in each phase. The dc
voltage is 100 V and the frequency is 100 Hz. The a-phase voltage has the wave-
shape depicted in Figure 10.3-2, and the impact of the a-phase voltage harmonics
on the a-phase current is clearly evident. Because of the harmonic content of
the waveforms, the power going into the three-phase load is not constant, which
implies that the power into the converter, and hence the dc current into the
converter, is not constant. As can be seen, the dc current waveform repeats every
60 electrical degrees; this same pattern will also be shown to be evident in g- and
d-axis variables.

Since the analysis of electric machinery is based on reference-frame theory, it is
convenient to determine g- and d-axis voltages produced by the converter. To do
this, we will define the converter reference frame to be a reference frame in which

1.0

0.8

0.6
Amplitude
Relative to
Fundamental
0.4

0.2

0.0
1 57 11 13 17 19 23 25 29 31 35 37 41 43 47 49

Harmonic Number

Figure 10.3-3 Frequency spectrum of six-step operation.
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Figure 10.3-4 Voltage and current waveforms for a six-stepped converter feeding an RL
load.

0 of (3.3-4) is equal to 0.. In this reference frame, the average g-axis voltage is equal
to the peak value of the fundamental component of the applied line-to-neutral volt-
age and the average d-axis voltage is zero. This transformation will be designated
K¢. Usually, the converter reference frame will be the rotor reference frame in the
case of a permanent magnet ac machine or the synchronously rotating reference
frame in the case of an induction motor. Deriving expressions analogous to (10.3-2)
for the b- and c-phase line-to-neutral voltages and transforming these voltages to
the converter reference frame yields

2 2 = 2(-1y _
Vs = Ve ~ ;vdcj=1 Jeiz 1 Cos(@0.) (10.3-3)
C2 e 12
Vas = ;Vdc;m sin(6j6,) (10.3-4)

From (10.3-3) and (10.3-4), it can be seen that the g- and d-axis variables will
contain a dc component in addition to multiples of the sixth harmonic. In addition
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to being evident in qd variables, the 6th harmonic is also apparent in the torque
waveforms of machines connected to six-stepped converters.

For the purposes of machine analysis, it is often convenient to derive an
average-value model of the machine in which harmonics are neglected. From
(10.3-3) and (10.3-4), the average g- and d-axis voltage may be expressed

- 2
chs = ;vdc (10.3-5)
=0 (10.3-6)

where the line above the variables denotes average value.

It is interesting to compare the line-to-neutral voltage to the g- and d-axis volt-
age. Such a comparison appears in Figure 10.3-5. As can be seen, the g- and d-axis
voltages repeat every 60 electrical degrees, which is consistent with the fact that
these waveforms only contain a dc component and harmonics that are a multiple
of six. The qd currents, gd flux linkages, and electromagnetic torque also possess
the property of repeating every 60 electrical degrees.

Ve 7

as

Vi

Ve =

Ve 4
Ve 7
Vs 4l74l74l747417417
—Vde T '
0 z 2 4 i BLs 2z
3 3 p 3 3

Figure 10.3-5 Comparison of a-phase voltage to g- and d-axis voltage.
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In order to calculate the average dc current into the inverter, note that the instan-
taneous power into the inverter is given by

Py = 1gcVge (10.3-7)

The power out of the inverter is given by
3 . .
ut = E(vqslqs + Vasitas) (10.3-8)

Neglecting inverter losses, the input power must equal the output power,
therefore

_ 3(vqs qs + vdslds)

iy = (10.3-9)

Equation (10.3-9) is true on an instantaneous basis in any reference frame. There-
fore, it is also true on average, thus

_ v i +V,i
fge = % (—qs SR ds) (10.3-10)

Vde

In a reference frame in which the fundamental components of the applied
voltages are constant and if the power transmitted through the bridge via the
harmonics of the voltage and current waveforms is neglected, (10.3-10) may be
approximated as

- 3 vds qs + vds qs

e =3 (10.3-11)

Vde

It should be emphasized that (10.3-11) is only valid in a reference frame in which
the variables are constant in the steady state (the converter reference frame, rotor
reference frame of a synchronous or permanent magnet ac machine, or the syn-
chronous reference frame) and when the harmonic power can be neglected.

Example 10A  Suppose a six-step bridge converter drives a three-phase RL load.
The system parameters are as follows: vy, = 100 V, r = 1.0 ©, [ = 1.0 mH, and
. = 27100 rad/s. Estimate the average dc current into the inverter. From (10.3-5)
and (10.3-6), we have that T)cqs =63.7 V and \_)cqs =0 V. From the steady-state
equations representing the RL circuit in the converter reference frame,

R
ds

from which we obtalnl =456 Aandi, igs =28.7 A.From (10.3-11), we have that
_dc =43.6 A. Itis 1nstruct1ve to do this calculation somewhat more accurately by
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including the harmonic power. In particular, from (10.3-2), the harmonic content
of the voltage waveform can be calculated, which can then be used to find the total
power being supplied by the load as

2 2 2 2 2 2
S - Ve i 26k —1) d 76k +1)
T2 r +jo r+j(6k — Do, r+j(6k + Do,

(10A-2)

This yields P, = 4389 W, which requires an average dc current of 43.9 A. Thus,
at least for this load, the approximations made in deriving (10.3-11) are valid.

Six-step operation is the simplest strategy for controlling the three-phase bridge
topology so as to synthesize a three-phase ac voltage source from a single-phase
dc voltage source. By varying w,, variable frequency operation is readily achieved.
Nevertheless, there are two distinct disadvantages of this type of operation. First,
the only way that the amplitude of the fundamental component can be achieved
is by varying v,.. Although this is certainly possible by using a controllable dc
source, appropriate control of the power electronic switches can also be used,
which allows the use of a less expensive uncontrolled dc supply. Such a method is
considered in the following section. Second, the harmonic content inevitably low-
ers the machine efficiency. An appropriate switching strategy can substantially
alleviate this problem. Thus, although the control strategy just considered is sim-
ple, more sophisticated methods of control are generally preferred. The one advan-
tage of the method besides its simplicity is that the amplitude of the fundamental
component of the voltage is the largest possible with the topology considered. For
this reason, many other control strategies effectively approach six-step operation
as the desired output voltage increases.

10.4 Six-Step Modulation

In this section, a refinement of six-step operation is presented. In particular, one
of several pulse-width modulation (PWM) control strategies that allows the ampli-
tude of the fundamental component of the voltage to be readily controlled is set
forth in this section. As in the case of six-step operation, the converter will appear
as a voltage-source to the system, and so six-step modulation is also described as
a voltage-source modulation scheme.
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Figure 10.4-1 Six-step modulation control schematic (deadtime logic not shown).

Figure 10.4-1 illustrates the logic control strategy for six-step modulation.
Therein, the logic signals S1-S3 are the same as the switching signals T1-T3 for
six-step operation. The control input to the converter is the duty cycle d, which
may be varied from 0 to 1. The signal w is a triangle waveform that also varies
between 0 and 1. The duty cycle d and triangle wave w are inputs of a comparator,
the output of which will be denoted c. The comparator output is logically added
with S1-S3 to yield the control signals for the semiconductor devices.

The operation of this control circuit is illustrated in Figure 10.4-2. As alluded to
previously, the signals S1-S3 are identical to T1-T3 in six-step operation. The duty
cycle d is assumed to be constant or to vary slowly relative to the triangle wave. The
frequency of the triangle wave is the switching frequency f, (the number of times
each switching device is turned on per second), which should be much greater
than the frequency of the fundamental component of the output. The output of
the comparator c is a square wave whose average value is d. When c is high, the
switching signals to the transistors T1-T3, and hence the voltages, are all identical
to those of six-step operation. When c is low, all the voltages are zero.

In order to analyze six-step modulation, it is convenient to make use of the fact
that the voltages produced by this control strategy are equal to voltages applied in
the six-step operation multiplied by the output of the comparator. Using Fourier
series techniques, the comparator output may be expressed as

c=d+ ZdZsinc(kd) cos(ko

) (10.4-1)
k=1

where 6, is the switching angle defined by
POy, = wg, (10.4-2)
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where g, = 27zf,. Multiplying (10.4-1) by (10.3-2) yields a Fourier series expres-
sion for the a-phase line-to-neutral voltage:

. 2dvg, & [ (=1 . (&Y ;
Ve =& - (cos 0.+ JZ:‘ < -1 cos((6j — 1)0,) + Gt cos((6j + 1)96)>)

2dv
+ dc

T

2d [s9) (s8]
+ ﬁZsinc(kd)z
T o= j=1

(-1y*+ . (-1y
< 1 cos(kf,, — (6j — 1)0,) + G+

Zsinc(kd) cos(kf, —6,)
k=1

cos(kf,, — (6j + 1)06)>

+

2dvy, —
de Zsinc(kd) cos(kf, + 6,)
=

zd (o] (o]

+ 2 S sinc(kd) Y

T = =
-1y

(_1)j+1 . j .
-1 ; 1 10.4-
< §-1 cos(kf,, + (6j — 1)6,) + 6+ 1 cos(kfy, + (6j + 1)6,) (10.4-3)

As can be seen, (10.4-3) is quite involved. The first line indicates that the PWM
drive will produce all the harmonics produced by six-step operation, except that
all components, including the fundamental, will be scaled by the duty cycle. The
next two lines represent the spectrum produced by six-step operation as projected
onto the lower side band of the fundamental and harmonics of the switching fre-
quency. The final two lines represent the spectrum produced by six-step operation
as projected onto the upper side band of the fundamental and harmonics of the
switching frequency. Although the high-frequency harmonic components are not
of direct interest for machine analysis, the location of these harmonics is important
in the identification of acoustic and electromagnetic noise.

From (10.4-3), it is apparent that the fundamental component of the applied
voltage is given by

2
Vas|fund = d;vdc cosf, (10.4-4)
From (10.4-4), it follows that the average g- and d-axis voltage are given by
‘_)Cqs = %dvdc (10.4-5)
V=0 (10.4-6)

Thus, by varying the duty-cycle, the amplitude of the fundamental component of
the inverter voltage is readily achieved with a fixed dc supply voltage.
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Figure 10.4-3 Voltage and current waveforms for six-step modulated converter feeding
an RL load.

g

Figure 10-4.3 illustrates the voltage and current waveforms obtained using
six-step modulation. The system parameters are the same as for Figure 10.3-4,
except that the duty cycle is 0.628 and the switching frequency is 3000 Hz. As can
be seen, the a-phase current waveform is approximately 0.628 times the current
waveform in Figure 10.3-4 if the higher-frequency components of the a-phase
current are neglected.

Although this control strategy allows the fundamental component of the
applied voltage to be readily controlled, the disadvantage of this method is
that the low-frequency harmonic content adversely affects the performance of
the drive. The next modulation scheme considered, sine-triangle modulation,
also allows for the control of the applied voltage. However, in this case, there
is relatively little low-frequency harmonic content, resulting in nearly ideal
machine performance.
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10.5 Sine-Triangle Modulation

In the previous section, a method to control the amplitude of the applied voltages
was set forth. Although straightforward, considerable low-frequency harmonics
were generated. The sine-triangle modulation strategy illustrated in Figure 10.5-1
does not share this drawback. Like six-step and six-step modulated operation, this
control strategy again makes the converter appear as a voltage-source to the ac
system, and so it is again classified as a voltage-source modulation strategy.

In Figure 10.5-1, the signals d,, d,, and d, represent duty cycles that vary in
a sinusoidal fashion and w is a triangle wave that varies between —1 and 1 with
a period T,. In practice, each of these variables is typically scaled such that
the actual voltage levels make the best use of the hardware on which they are
implemented.

Figure 10.5-2 illustrates the triangle wave w, a-phase duty cycle, and resulting
a-phase line-to-ground voltage. Therein, the a-phase duty cycle is shown as being
constant even though it is sinusoidal. This is because the triangle wave is assumed
to be of a much higher switching frequency than the duty cycle signals, so that
on the time scale shown, the a-phase duty cycle appears to be constant. For
the purposes of analysis, it is convenient to define the “dynamic average” of a
variable—that is, the average value over a period of time T;,—as

t

2= [ xwar (10.5-1)
swJ =Ty,
From Figure 10.5-1 and (10.5-1), it can be shown that
~ 1
Vog = 5(1 +d,)vg (10.5-2)
Similarly,
~ 1
Vpg = 5(1 + dp)vg, (10.5-3)
Figure 10.5-1 Sine-triangle
d, N T1 Modulation control schematic
/ (deadtime logic not shown).
L >o— 14
B —5 T -
/ —Do_ .
d. —)—N -
. > 16
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N

ag

Figure 10.5-2 Operation of a sine-triangle modulator.

N 1

Veg = 5(1 +d v

(10.5-4)

If d,, d,, and d, form a balanced three-phase set, then these three signals
must sum to zero. Making use of this fact, substitution of (10.5-2)-(10.5-4) into

(10.2-11)-(10.2-13) yields

~ 1
Vas = zdavdc
N 1
Vps = Edbvdc
~ 1
Ves = Edcvdc

(10.5-5)
(10.5-6)

(10.5-7)

Although it has been assumed that the duty cycles are sinusoidal,
(10.5-5)-(10.5-7) hold whenever the sum of the duty cycles is zero. If the

duty cycles are specified as
d, =dcosb,
d, = dcos <6’C - 2?7[)

2
d, = dcos <9c + ?>
It follows from (10.5-5)-(10.5-7) that

.=

s %dvdo cos 0,

T

)

~

Vs

1
Edvdc cos (Gc -

(10.5-8)

(10.5-9)

(10.5-10)

(10.5-11)

(10.5-12)
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A~

D, = %dvdc cos <0C + 2?”) (10.5-13)

Recall that the “A” denotes the dynamic-average value. Thus, assuming that
the frequency of the triangle wave is much higher than the frequency of the
desired waveform, the sine-triangle modulation strategy does not produce any
low-frequency harmonics. Transforming (10.5-11)-(10.5-13) to the converter
reference frame yields

Vos = %dvdc (10.5-14)
P =
v, =0 (10.5-15)

Equation (10.5-14) and Equation (10.5-15) serve as both steady-state average-
value, and, since there are no low-frequency harmonics, dynamic-average-value
expressions.

Figure 10.5-3 illustrates the performance of a sine-triangle modulated con-
verter feeding an RL load. The system parameters are identical to the study in

100

-100 -

50 -
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-50 4

40 -

e 204 w[’rn”w”wr [” e V ! m”m[' i
0

Figure 10.5-3 Voltage and current waveforms using sine-triangle modulation.
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Figure 10.4-3, except that d = 0.4, which results in the voltage waveform with the
same fundamental component as in Figure 10.4-3. Comparing Figure 10.5-3 with
Figure 10.4-3, it is evident that the sine-triangle modulation strategy results in
greatly reduced low-frequency current harmonics. This is even more evident as
the switching frequency is increased.

From (10.5-11)-(10.5-13) or (10.5-14) and (10.5-15), it can be seen that if d
is limited to values between 0 and 1, then the amplitude of the applied voltage
varies from 0 to v,/2, whereas in the case of pulse width modulation, the
amplitude varies between 0 and 2v,./z. The maximum amplitude produced by
the sine-triangle modulation scheme can be increased to the same value as for
six-step modulation by increasing d to a value greater than 1, a mode of operation
known as overmodulation.

Figure 10.5-4 illustrates overmodulated operation. In the upper trace, the two
lines indicate the envelope of the triangle wave. The action of the comparators,
given the value of the duty cycle relative the envelope of the triangle wave
in the upper trace of Figure 10.5-4, results in the following description of the
dynamic-average of the a-phase line-to-ground voltage

Ve d,>1
Vyg = %(1 +dy vy -1<d,<1 (10.5-16)
0 d, <1

a

Figure 10.5-4 Overmodulation.
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This is illustrated in the second trace of Figure 10.5-4, wherein the angles 6, and
0, mark the points at which the a-phase duty cycle is equal to 1 and —1, respec-
tively. Using Fourier analysis, v,, may be expressed in terms of its average-value
and fundamental component as

Vdc Zvdc
Vaglavgeuna = -~ + ——f(d) cos b, (10.5-17)
where
1 1\2 1 1
f(d)—5 1_<3> +Zd<7r—2arccos<a>> (10.5-18)

and d must be greater than unity (overmodulated). The b- and c-phase volt-
ages may be similarly expressed by subtracting and adding 120° from 6, in
(10.5-17), respectively, whereupon (10.2-11)-(10.2-13) may be used to express the
line-to-neutral voltages. This yields that

2vy,
[Vasluna = —f(d) cos(8,) (10.5-19)
T

As d varies from one to infinity, f(d) varies from z/4 to 1. Thus, the amplitude of
the fundamental component increases as the duty cycle becomes greater than 1.
However, this increase is at a cost; low-frequency harmonics will be present and
will increase with duty cycle. In particular, at a duty cycle of 1, no low-frequency
harmonics will be present, but at d = oo, the harmonics are equal to those produced
by six-step operation.

Expressing the b- and c-phase voltages analogously to (10.5-19) and transform-
ing to the converter reference frame yields

—c zvdc
vqs =
V3

fd) d>1 (10.5-20)

V=0 d>0 (10.5-21)

It is interesting to observe the performance of the overmodulated sine-triangle
modulated bridge. Figure 10.5-5 illustrates system performance for the same con-
ditions as illustrated in Figure 10.5-3, except that d has been increased to 2. As can
be seen, the fundamental component of the voltage and current waveforms has
increased; however, this is at the expense of a slight increase in the low-frequency
harmonics. As the duty cycle is further increased, the voltage and current wave-
forms will approach those shown in Figure 10.3-4.
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Figure 10.5-5 Voltage and current waveforms during overmodulated operation.
10.6 Extended Sine-Triangle Modulation

One of the chief limitations of sine-triangle modulation is that the peak value of
the fundamental component of the line-to-neutral voltage is limited to v,./2. As it
turns out, this limit can be increased by changing the duty cycle waveforms from
the expression given by (10.5-8)—(10.5-10) to the following:

d, = dcosf, —d, cos(36,) (10.6-1)
d, = dcos (0 - ?) d; cos(36,) (10.6-2)

d, = dcos <Gc + 2{) — d5 cos(36,) (10.6-3)
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Doing this will allow us to use values of d greater than 1. This scheme will be
referred to as extended sine-triangle modulation, which is also classified as a
voltage-source modulation scheme.

In order to understand why (10.6-1)-(10.6-3) can be used to increase the max-
imum fundamental component of the line-to-neutral voltage, note that applying
the dynamic-average definition to (10.2-10) yields

~

1 ~
Vg = 5@8 + Vpg + V) (10.6-4)

Applying the same dynamic-average definition to (10.2-5)-(10.2-7) and solving for
the line-to-neutral voltage yields

Vgs = Vg = Vg (10.6-5)
Vs = Vpg = Vg (10.6-6)
Veg = Vg = Vg (10.6-7)

Substitution of (10.6-1)-(10.6-3) into (10.5-2)-(10.5-4), and then substituting the
resulting expressions for V4, ., and ,, into (10.6-4) and then (10.6-5)~(10.6-7)

aQ

yields
Vy = %dﬁdc cosé, (10.6-8)
Vs = %dﬁdc cos (QC - 2{) (10.6-9)
Vs = %dﬁdc cos <Bc + 2%) (10.6-10)

This is the same result as was obtained for sine-triangle modulation in the previ-
ous section, (10.5-11), (10.5-12), and (10.5-13), and like the previous result is valid
provided |d,|, |d,|, and |d,| are less than unity for all 6. The difference is that this
requirement on |d,|, |d,|, and |d.| is met. In particular, in the case of sine-triangle
modulation, ensuring that |d,|, |d,|, and |d,| are all less than unity is met by requir-
ing|d| < 1, which forces the fundamental component of the line-to-neutral voltage
to be limited tov,,/2. In the case of extended sine-triangle modulation, the require-
ment that |d,|, |d,|, and |d | are all less than unity can be met with d > 1, because
the third-harmonic term can be used to reduce the peak value of the phase duty
cycle waveforms.

It remains to establish the maximum value of d and the value that should be used
for d,. Because of symmetry, these quantities can be determined by considering
just the a-phase over the range 0 < 6, < z/6. Note that over this range, the effect
of the third-harmonic term is to reduce the magnitude of d, (provided that d is
positive). However, at 6, = 7/6, cos 36, is zero and so the amount of the reduction
is zero. Evaluating (10.6-1) at §, = z/6 leads to the requirement that

dcos(z/6) <1 (10.6-11)
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which means that

d< 2 (10.6-12)

V3

for the strategy to work correctly. The next step is to establish the value of d;. To
derive this value, requiring that (10.6-1) has a peak value less than unity for all 6,
when d is its maximum value of 2/ \/E yieldsd; =1/(3 \/g). For this reason, it is
common to select d; = d/6. This answer is unique; any other value will result in
overmodulation when d = 2/ \/5

The primary advantage of this strategy is the increase in available voltage, which
can be obtained. In particular, substitutingd = 2/ \/5 into (10.6-8), the fundamen-
tal component of the line-to-neutral voltage is increased to v, / \/g ,a15% increase
in amplitude over sine-triangle modulation. In regard to the average value model-
ing of this strategy, (10.5-14) and (10.5-15) are valid provided thatd < 2/ \/5

10.7 Space-Vector Modulation

Another voltage-source PWM strategy for achieving three-phase voltage wave-
forms that are devoid of low-frequency harmonic content is space-vector modu-
lation [9]. This modulation strategy is designed to work with voltage commands
expressed in terms of qd variables. In particular, in this strategy, voltage commands
expressed in a stationary reference frame (vj; and v'’) are sampled at the beginning
of each switching cycle, and then the inverter semiconductors are switched in such
away that the dynamic average of the actual g- and d-axis voltages in the stationary
reference frame (ﬁfls and ﬁfis) are obtained over the ensuing switching period.

When describing the space-vector modulator algorithm, it is convenient to
define the g- and d-axis modulation indexes as the g- and d-axis voltages in the
stationary reference frame normalized to the dc voltage

my =V, /v (10.7-1)
m =9 /vy, (10.7-2)

It is likewise convenient to define the commanded modulation indexes as

my = vy /v (10.7-3)
my =V /v, (10.7-4)

Assuming that the dc voltage is constant, or at least slowly varying compared
with the switching frequency, it is apparent that the dynamic-average of the g- and
d-axis voltage will be equal to the commanded voltages if the dynamic average of
the g- and d-axis modulation index is equal to the commanded modulation index.
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The space-vector modulation strategy can now be explained in terms of the
space-vector diagram illustrated in Figure 10.7-1. Therein, the g- and d-axis
modulation index vector corresponding to each of the eight possible switching
states of the converter is shown. The numerical values of the g- and d-axis
modulation index corresponding to the i’th state, My, and m,,, respectively,
along with the on/off status of the inverter transistors corresponding to that state,
are listed in Table 10.7-1.

In order to determine the sequence of states required to achieve the desired mod-
ulation index for a switching cycle, the following steps are performed. First, given
the g- and d-axis voltage command in the stationary reference frame, the g- and
d-axis modulation index command is calculated using (10.7-3) and (10.7-4). The
next step is to limit the magnitude of the modulation index command to reflect
the voltage limitation applied to the converter. The magnitude of the modulation

State 3 State 2 Figure 10.7-1 Space-vector
Sector diagram.
2
State
Sector \ 7,8 /' Sector
3 I State 1

State 4 mg axis

State 5 State 6

my axis

Table 10.7-1 Modulation Indices versus State.

State T1/T4 T2/T5 T3/T6 mg, my,

1 1 0 0 2/3 cos(0°) —2/3sin(0°)

2 1 1 0 2/3 cos(60°) —2/3sin(60°)
3 0 1 0 2/3 cos(120°) —2/3sin(120°)
4 0 1 1 2/3 cos(180°) —2/3sin(180°)
5 0 0 1 2/3 cos(240°) —2/3sin(240°)
6 1 0 1 2/3 cos(300°) —2/35in(300°)
7 1 1 1 0 0

8 0 0 0 0 0
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index command is defined as

m* =/ (m) + (mr)? (10.7-5)

In the stationary reference frame, the modulation index command vector has
a magnitude of m"and rotates in the gd plane at the desired electrical frequency.
The largest magnitude that can be achieved without introducing low-frequency
harmonics corresponds to the radius of the largest circle that can be circumscribed
within the boundaries of the hexagon connecting the switching state vectors in
Figure 10.7-1. This radius is given by

My, = —— (10.7-6)

V3
The limited modulation index command is next found as follows. First, the mag-
nitude of the raw command is computed using (10.7-5). Then the conditioned
modulation index commands are calculated as follows:

m;; m* S mmax
m(’;* =9 m;’; (10.7-7)
E3
mmax_|m*| m* > mp..
( m* m*<m
d — ""*max
m:‘;* =9 mz (10.7-8)
*
max |m*| m- > mmax

The next step is to compute the sector of the conditioned modulation command.
This is readily calculated from

angle (m}* — jm?%") 3
Sector:ceil( ( 1 d) > (10.7-9)

T

where angle() returns the angle of its complex argument and has a range of 0-2x
and ceil() returns the next greatest integer.

Once the sector has been determined, the sequence of states used in the
ensuing switching cycle are as set forth in Table 10.7-2. This sequence consists
of four states: the initial state denoted a, the second state denoted f, the third
state denoted y, and the final state denoted 6. The initial state is always 7 or
8, and the final state will be 8 if the initial state is 7 and will be 7 if the initial
state is 8. Therefore, the switching state always begins and ends in a state in
which the instantaneous modulation indexes are zero. Another property of the
listed state sequence is that only the three states (with states 7 and 8 counted
as a single state since they produce identical voltages) with modulation indexes
spatially closest to the desired modulation index are used. It is also interesting
to observe that with the state sequence listed, the transition between each state
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Table 10.7-2 State Sequence.

Sector Initial State (a) 2nd State () 3rd State (y) Final State (6)

LR WD R OO A W N
@ 00 00 00 00 00 NN N N 9N
—= U W W= o R R NN
O A R NN R U U W W
NN N NN N 0 0 0 0 00 00

and the following state is always achieved by switching the semiconductors in a
single converter leg. This is an important feature because it minimizes switching
frequency.

After the state sequence has been determined, the time to be spent in each state
has to be determined. It can be shown that the dynamic average of the modulation
index is given by

s t, ( )
m,=—m,,+—m 10.7-10
q Tsw q.8 Tsw (8%
= t—ﬂmd,ﬂ + t—ymd,y (10.7-11)
TSW TSW

where t; and t, denote the amount of time spent in the second and third states of
the sequence, g and y denote index (1-6, see Table 10.7-1) of the second and third
states of the sequence as determined from Table 10.7-2, and T, denotes the switch-
ing period. Setting the dynamic-average modulation indexes equal to the limited
modulation index commands and solving (10.7-10) and (10.7-11) for the switching
times yields

ty = Ty, (mg,m;* —m, ms) /D (10.7-12)

t, = Ty, (—mgymy" +my ;m?) /D (10.7-13)
where

D=mgpmy, —mg, my, (10.7-14)
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Once f; and ¢, have been found, the last step is to determine the instants at which
the state transitions will occur. To this end, it is convenient to define t = 0 as the
beginning of the switching cycle and to define ¢, t5, and ¢, as the times at which
the transition from state « to f, § to y, and y to &, respectively, are made. These
times are determined in accordance with

ty =Ty, —t;—t,)/2 (10.7-15)
ty=1t,+1t (10.7-16)
te=tg+t, (10.7-17)

In summary, the space-vector modulator operates as follows. At the beginning
of a switching cycle, the commanded modulation indexes are calculated using
(10.7-3) and (10.7-4). Next, the conditioned modulation index commands are lim-
ited using (10.7-5)—(10.7-8) in order to reflect the voltage limitations of the con-
verter. Next, the sector of the modulation command is determined using (10.7-9)
from which the state sequence is established using Table 10.7-2. At this point,
(10.7-12)-(10.7-14) are used to determine the amount of time spent in each state,
and then (10.7-15)-(10.7-17) are used to calculate the actual transition times.

The modeling of this switching algorithm is quite straightforward. In particular,
neglecting deadtime and voltage drops, it may be assumed that the output voltage
in the stationary reference frame may be expressed as

A

Vgs = Mg Vg, (10.7-18)

V= mivy, (10.7-19)

ds

It is interesting to note that because of the limitation on the magnitude of the
modulation index (10.7-6), the limit on the peak value of the fundamental com-
ponent of the line-to-neutral voltage that can be produced is v,/ \/3 which is
identical to that of extended sine-triangle modulation.

10.8 Hysteresis Modulation

Thus far, all the bridge control strategies considered have resulted in a three-phase
voltage source. Thus, those strategies may all be described as voltage-source. How-
ever, it is also possible for the bridge to be controlled so as to appear to be, at
some level, and for some conditions, as a current source. Hysteresis modulation is
one of these current-source control schemes. In particular, let iz, i; , and if; denote
the desired machine or load currents. In order that the actual a-phase current be
maintained within a certain tolerance of the desired a-phase currents, the control
strategy depicted in Figure 10.8-1, known as a hysteresis modulator, is used. As can

be seen, if the a-phase current becomes greater than the reference current plus the
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i, >ik+h

<i* —h

/ ® o
lax as

Figure 10.8-1 State transition diagram.

hysteresis level h, the lower transistor of the a-phase leg is turned on, which tends
to reduce the current. If the a-phase current becomes less than the reference cur-
rent minus the hysteresis level h, the upper transistor is turned on, which tends to
increase the a-phase current. The b- and c-phases are likewise controlled. The net
effect is that the a-phase current is within the hysteresis level of the desired cur-
rent, as is illustrated in Figure 10.8-2. As can be seen, the a-phase current tends to
wander back and forth between the two error bands. However, the a-phase current
has inflections even when the current is not against one of the error bands; these
are due to the switching in the other phase legs.

The performance of the hysteresis modulator is illustrated in Figure 10.8-3 for
the same conditions illustrated in Figure 10.4-3 and Figure 10.5-3. In this case, the
commanded a-phase current is

i*;=19.1cos(f, — 17.4°)

and the b- and c-phase reference currents lag the a-phase reference currents by
120° and 240°, respectively. This current command is the fundamental component
of the current obtained in Figure 10.4-3 and Figure 10.5-3. The hysteresis level is
set at 2 A. As can be seen, as in the case of the sine-triangle modulated converter,
relatively little low-frequency harmonic content is generated.

iso+h -

Figure 10.8-2 Allowable current band.
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Figure 10.8-3 Voltage and current waveforms using a hysteresis modulator.

Although the concept of having a controllable current source is attractive in that
it allows us to ignore the stator dynamics, there are several limitations of hystere-
sis modulation. First, there is a limit on the range of currents that can actually be
commanded. In particular, assume that for a given current command, the peak
line-to-neutral terminal voltage is v,,.. Since the peak line-to-neutral voltage the
bridge can supply is 2v,./3, it is apparent that v, must be less than 2v,./3 if the
commanded current is to be obtained. There is another constraint, which is that
the peak line-to-line voltage \/§ka must be less than the peak line-to-line voltage
the converter can achieve, which is equal to v,,. This requirement is more restric-
tive and defines the steady-state range over which we can expect the currents to
be tracked. In particular,

vy < v—\;“_ (10.8-1)
3
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Note that the maximum voltage achieved using hysteresis modulation is greater
than that which is achieved using sine-triangle modulation, but equal to that of
extended sine-triangle or space-vector modulation.

In addition to the steady-state limitation on whether the commanded currents
will be tracked, there is also a dynamic limitation. In particular, since the stator
currents of a machine are algebraically related to the state variables, they cannot be
changed instantaneously. Therefore, current tracking will be lost during any step
change in commanded currents. When the current command is being changed
in a continuous fashion, then current tracking will be maintained provided the
peak line-to-neutral voltage necessary to achieve the commanded currents does
not exceed (10.8-1).

One disadvantage of the hysteresis-controlled modulation scheme is that the
switching frequency cannot be directly controlled. Indirectly, it can be controlled
by setting h to an appropriate level—making h smaller increases the switching
frequency and making h larger decreases the switching frequency; however, once
h is set, the switching frequency will vary depending on the machine parameters
and the operating point. For this reason, current-regulated operation is sometimes
synthesized by using suitable control of a voltage-regulated modulation scheme
with current feedback.

In regard to average-value modeling, the most straightforward approach is to
assume that the actual currents are equal to the commanded currents. Since this
involves neglecting the dynamics associated with the load, such an approach con-
stitutes a reduced-order model. When taking this approach, a check should be
conducted to make sure that sufficient voltage is available to actually achieve the
current command because such a modeling approach is not valid if sufficient volt-
age is not present. In the event that a more sophisticated model is required, the
reader is referred to References 10 and 11, which describe how to include dynam-
ics of hysteresis modulation and how to model the effects of 1oss of current tracking
due to insufficient inverter voltage, respectively.

10.9 Delta Modulation

Delta modulation is another current-source modulation strategy. This strategy has
an advantage over hysteresis modulation in that a maximum switching frequency
is set. The disadvantage is that there is no guarantee on how closely the actual
current will track the commanded current.

In this strategy, the current error of each phase is calculated in accordance
with

e =it —i (10.9-1)
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Every T, seconds (the switching period), the current error is sampled. If the
current error is positive, the upper switch is turned on; if it is negative, the lower
switch is turned on. Clearly, as the switching period is decreased, the actual cur-
rent will track the desired current more and more closely. It should be observed
that since the sign of the error does not necessarily change from one sampling to
the next, the phase leg involved will not necessarily switch at every sampling. In
addition, since a semiconductor must be turned off before being turned back on,
the switching frequency is less than 1/(2T,).

There are two variations of this strategy. In the first, the three phase legs are sam-
pled and switched simultaneously. In the second, the switching between phases
is staggered. The second method is preferred because it provides slightly higher
bandwidth and is more robust with respect to electromagnetic compatibility con-
cerns since the switching in one phase will not interfere with the switching in
another. This robustness, coupled with its extreme simplicity in regard to hard-
ware implementation, make this strategy very attractive.

As in the case of hysteresis modulation, there are limitations on how well and
under what conditions a current waveform can be achieved. The limitations aris-
ing from available voltage are precisely the same as for hysteresis modulation,
and so no further discussion will be given in this regard. However, in the case
of delta modulation, there is an additional limitation in that there is no guaran-
tee on how closely the waveform will track the reference. This must be addressed
through careful selection of the switching frequency. Trading off waveform quality
versus the switching frequency, while keeping in mind that the actual switch-
ing frequency will be lower than the set switching frequency, is a trade-off best
made through the use of a waveform-level simulation of the converter machine
system.

10.10 Open-Loop Voltage and Current Regulation

In the previous sections, a variety of modulation strategies were set forth that
achieve voltages or currents of a certain magnitude and frequency. For each of
these, a method to predict the dynamic average of the g- and d-axis voltages or
currents in the converter reference frame was set forth. In this section, we exam-
ine the inverse problem—that of obtaining the appropriate duty cycle(s) and the
converter reference-frame position in order to achieve a desired dynamic-average
synchronous reference frame g- and d-axis voltage or current.

Six-step modulation, extended sine-triangle modulation, and space-vector
modulation are all voltage-source modulation schemes. In our development, we
will use these schemes to develop an open-loop voltage-regulated converter. Hys-
teresis modulation and delta modulation are both current source-based schemes.
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These will be used as the basis of developing an open-loop current-regulated
converter.

The first modulation strategy considered in this chapter that was capable of
achieving a g- and d-axis voltage command was six-step modulation. In order
to see how the variables associated with this modulation strategy are related to
a voltage command, observe that with vy = 0, we have

Vas| _ [cosbe  sinb, | [vg (10.10-1)
1 —sinf,, cosf, | [v5 '

where 6, is angular displacement of the synchronous reference frame from the
converter reference frame, that is,

0, =6,—6, (10.10-2)

Replacing vgs with the commanded value vg’;, vgs with the commanded value vf;,
and vg, and vi_with the average values expressions given by (10.4-5) and (10.4-6)

in (10.10-1) yields

* ; 2
[vfls] _ [cos 0., mn&ce] l;dde] (10.10-3)

ex .
Ve —sinf,, cosé, 0

From (10.10-3), we obtain

d= Zch (ve)* + ()’ (10.10-4)
0., = angle (vé; — jve:) (10.10-5)

Together, (10.10-4) and (10.10-5) suggest the control strategy illustrated in
Figure 10.10-1. Therein the inputs are the g- and d-axis voltage commands in the
synchronous reference frame v and v;, the dc input voltage to the inverter v,
and the position of the synchronous reference frame 6,. The outputs are the duty

6*

vhs T
s * * N N
o L o0 - 0_/_ —>d
Vds 7 D
2
Vde D> HLpg(s) 7
. 0., +
< Lo ce
angle (Vs — jvs) \@ > 0,
W
0

Figure 10.10-1 Voltage regulation using a six-step modulator.
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cycle d, and the position of the converter reference frame 6, as required by the
switch level control defined by Figure 10.4-1 (in which S1, S2, and S3 are defined
in the same way as T1, T2, and T3 in Fig. 10.3-1). As can be seen in Figure 10.10-1,
the duty cycle is essentially calculated in accordance with (10.10-4) with the
exception that the dc voltage is filtered through a transfer function H,x(s) to
eliminate noise and for the purposes of stability. In addition, a limit is placed
on the duty cycle d. The position of the converter reference frame is established
by simply adding ., as set forth in (10.10-5) to the position of the synchronous
reference frame 0,.

The next modulation strategy considered was sine-triangle modulation. How-
ever, sine-triangle modulation is rarely used in its pure form; it is normally utilized
in conjunction with the extended sine-triangle modulation since this yields the
potential for a greater ac voltage for a given dc voltage than sine-triangle modula-
tion. The development of a strategy to generate the duty cycle and the position of
the converter reference frame from the g- and d-axis voltage command is nearly
identical to the case for six-step modulation except that (10.5-14) and (10.5-15)
replace (10.4-5) and (10.4-6) in the development, which results in a change in the
gain following the low-pass filter output from 2/x to 1/2, the change of the limit
on the duty cycle from 1 to 2/ \/5, and the introduction of the duty cycle d,. These
modifications are reflected in Figure 10.10-2. Using the output of this block, the
gating of the transistors is readily determined as explained in Section 10.5 and
Section 10.6.

In the case of space-vector modulation, the situation is more straightforward
since this switching algorithm is based on a g- and d-axis voltage command, albeit
in the stationary reference frame. In this case, the g- and d-axis voltage in the
stationary reference frame is calculated from the g- and d-axis command in the
stationary reference frame using the frame-to-frame transformation; in particular,

v 2
qs * * NJN
. Va2 +05)° - f N d
¢ N D
Vds 7 D 0
| g
Vae =—>—> H pp(s) 5 .
3
% % 0(?(4 +
angle (viy — jvs) @ > 0,
’bﬁ
[7)

e

Figure 10.10-2 Voltage regulation using an extended sine-triangle modulator.
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this yields,
Vs = Vg5 COS 0, + Vi sin g, (10.10-6)
Vi = —Vgs SING, + V5 cos o, (10.10-7)

Let us now consider the problem of obtaining an open-loop current-regulated
converter using one of the current source-based modulation schemes. Both
hysteresis and delta modulation are based on an abc variable current command,
which is readily computed in terms of a g- and d-axis current command in the
synchronous reference, and the position of the synchronous reference frame, 6,
using the inverse transformation. In particular, this yields

i:bcs = Kgil if;iOs (10.10-8)

10.11 Closed-Loop Voltage and Current Regulation

In the previous section, several strategies for obtaining g- and d-axis voltage
and current commands were discussed. However, each of these methods was
open-loop. In the case of the voltage control strategies, errors will arise because
of logic propagation delays, switching deadtime, and the voltage drop across the
semiconductors. In the case of current control, even if the inverter is operated in
an ideal sense, there will still be a deviation between the actual and commanded
current that will have the net effect that the average g- and d-axis current obtained
will not be equal to the commanded values.

In this section, closed-loop methods of regulating g- and d-axis voltages and cur-
rents are set forth. These methods stem from the synchronous regulator concept
set forth in Reference 10. This concept is based on the observation that integral
feedback loop is most effective ifimplemented in the synchronous reference frame.
Because of the integral feedback, there will be no error for dc terms provided the
inverter can produce the required voltage. In other words, the average value of
the voltages or currents (as expressed in the synchronous reference frame) will
be exactly achieved. Since the average value in the synchronous reference frame
corresponds to the fundamental component in abc variables, it can be seen that
integral feedback loop implemented in a synchronous reference frame will ensure
that the desired fundamental component of the applied voltages or currents is pre-
cisely achieved.

Figure 10.11-1 illustrates a method whereby integral feedback can be used to
form a closed-loop voltage-regulated converter using a voltage-source modulator
or a closed-loop current-regulated converter using a current-source modulator.
Therein, f can denote either voltage v or current i. The superscript ** designates



10.11 Closed-Loop Voltage and Current Regulation

Figure 10.11-1 ek s
Synchronous regulator. fq +® > fy
+
+ 1
e e
fq > > o
fi A2 > fi
+
+
1
fd _—
- I

a physically desired value, whereas the superscript * designates the inverter com-
mand (which will be used in accordance with one of the modulation strategies
described in Section 10.10). Note that the strategy is dependent upon the measured
value of voltage or current in the synchronous reference frame, f; and f7. These
variables are obtained by measuring the abc voltages or currents and transforming
them to the synchronous reference frame.

For the purposes of analysis, it is sufficient to consider the g-axis loop (as the
d-axis will yield identical results), whereupon it is convenient to assume that g-axis
quantity f7 will be equal to the g-axis inverter command fg* plus an error term; in
particular,

Jo =13 Hfen (10.11-1)

Incorporating (10.11-1) into Figure 10.11-1, it is straightforward to show that the
transfer function between the g-axis quantity f7, the command f;**, and the error
qerr 1S given by

7,8

o =1+ ¢ (10.11-2)

7,5+ 172

From (10.11-2), it is readily seen that in the steady state, the average value of the
g-axis quantity f; will be equal to the g-axis command f;**. It is also possible to
see that from the perspective of (10.11-2), it is desirable to make time constant z,
as small as possible since this decreases the frequency range and extent to which
qerr CAN COITUPL f7.

However, there is a constraint on how small 7, can be made. In particular, again
using (10.11-1) in conjunction with Figure 10.11-1, it can be shown that

fe=fe (10.11-3)

e
g.err
7.5+ 1
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As this point, it is important to keep in mind that f should be relatively free
from harmonic content or otherwise distortions in the switching pattern will
result. Since f7,, contains considerable high-frequency switching components,
7, must be large enough so that significant switching harmonics are not present

in f&*.
the selection of 7, is a function of the modulation strategy. For example, if this
strategy is used for current regulation using a current-source modulator, then
selecting
oy
" 2”fsw,est
where f, . s the estimated switching frequency (which can be determined
through a waveform-level simulation), should normally produce adequate
attenuation of the switching ripple in the inverter command.
However, if the scheme is being used for voltage-regulation in conjunction with
a extended sine-triangle or space-vector voltage-source modulator, then there will
be considerable voltage error ripple, whereupon selecting
A 20
T 2xfy,
where f, is the switching frequency is more appropriate. Finally, for six-step mod-
ulation, the presence of low-frequency harmonics necessitates an even larger time
constant, perhaps on the order of
w20
" 276f,

min

(10.11-4)

(10.11-5)

(10.11-6)

where f;, denotes the minimum frequency of the fundamental component of the
applied waveform that will be used (this can require a very long time constant and
implies poor transient performance).

The regulator shown in Figure 10.11-1 is designed as a trimming loop wherein
a voltage-source modulation strategy (i.e., six-step, sine-triangle, extended
sine-triangle, or space-vector modulators) is used to create a voltage-source
convertet, or in which a current-based modulation strategy (hysteresis or delta
modulators) is used in a current-regulated inverter. However, it is sometimes the
case that a voltage-based modulation strategy will be used to regulate current.
The advantage of this approach to obtaining a current command is that it allows
a fixed switching frequency modulation strategy to be used.

One approach to achieving a voltage-source-modulator-based current regulator
is depicted in Figure 10.11-2. Inputs to this control are the g- and d-axis current
commands igs and i%;, the measured g- and d-axis currents ig; and i, _(obtained by
measuring the abc currents and transforming to the synchronous reference frame),
and finally the speed of the synchronous reference frame w,. The outputs of the
control are the g- and d-axis voltage commands in a synchronous reference frame
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o o*
vds

Las

e
ds

[0

e

Figure 10.11-2 Voltage-source modulator based current regulator.

Vgs and vér, which are achieved using one of the open-loop control strategies dis-
cussed in Section 10.10. Parameters associated with this strategy are the regulator
gain K, time constant z,, and a Thevenin equivalent inductance of the load L.
The low-pass filter H; pr(s) is designed to have unity gain at dc with a cut-off fre-
quency somewhat below the switching frequency.

In order to gain insight into the operation of this control loop, let us assume that
the actual - and d-axis voltages vg, and v/ are equal to their commanded values
vgs and vér, that the low pass filter has dynamics that are appreciably faster than
those of this regulator so that they may be ignored for the purpose of designing
this control loop, and that on the time scale that this control loop operates (which
is much faster than the typical fundamental component of the waveforms in abc
variables but slower than the switching frequency), the load on the inverter may
be approximated as

Vgs = @ Lrif + Lypigs + egr (10.11-7)

Vo, = —w,Lrigs + Lypig + egr (10.11-8)

ds

where e;; and e,y are slowly varying quantities. In essence, this is the model of
a voltage-behind-inductance load. Many machines, including permanent-magnet
ac machines (see Problem 19) and induction machines (see Problem 20), can have
their stator equation approximated by this form for fast transients. Incorporating
these assumptions into Figure 10.11-2 yields

K.(r.s + 1)i% + 7,s€°
o= T aT (10.11-9)

; L 2+Kr + l
$2+ —s
T Ly Ly,
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A similar result can be derived for the d-axis. Inspection of (10.11-9) reveals that
there will be no steady-state error and that there is no interaction between the
g- and d-axis. This interaction was eliminated by the L, term in the control. Of
course, if this term is not used, or if the value used is not equal to the Thevenin
equivalent inductance, then interaction between the g- and d-axis will exist and
can be quite pronounced.

The gain K, and time constant 7, may be readily chosen using pole-placement
techniques. In particular, if it is desired that the pole locations be at s = —s; and
s = —s,, wherein s; and s, are chosen to be as fast as possible, subject to the
constraint that the two poles will be considerably slower than the low pass filter
and the switching frequency, then the gain and time constant may be readily
expressed as

K, =Ly(s; +5,) (10.11-10)
7, = 1.1 (10.11-11)
ST 05

In utilizing (10.11-10) and (10.11-11), one choice is to make the system critically
damped and chose

5, =8, & ”f% (10.11-12)
where f, is the switching frequency. A numerical example in applying this design
procedure to the design of the current control loops of a large induction motor
drive is set forth in Reference 13, and the application of the same general technique
to an ac power supply is set forth in Reference 14; this latter reference includes an
excellent discussion of the decoupling mechanism.

Any of the techniques used in this section will guarantee that provided enough
dc voltage is present, the desired fundamental component of the applied voltage
or current will be exactly obtained. Of course, low levels of low frequency har-
monics (including negative sequence terms, fifth and seventh harmonics, etc.) and
high frequency switching harmonics will still be present. A method of eliminating
low-frequency harmonics is set forth in References 15 and 16.
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Problems

10.1

10.2

10.3

10.4

Vag 0

Show that v, is zero for a balanced three-phase induction motor.
Show that v, is zero for a balanced three-phase synchronous machine.

Show that v is zero for a balanced three-phase permanent magnet ac
machine with a sinusoidal back emf.

Figure 10P-1 illustrates the a-phase line-to-ground voltage of a

three-phase bridge converter. Determine the diode and transistor
forward voltage drops.

T 15V

| off scale

v v

Figure 10P-1 The a-phase line-to-ground voltage of a three-phase bridge converter.

10.5

10.6

10.7

10.8

10.9

10.10

From Figure 10.3-1, derive (10.3-1).

From (10.3-1), deduce analogous expressions for v,., and v,,.
From Figure 10.3-2, derive (10.3-2).

From (10.3-2), deduce analogous expressions for v,, and v,.

Consider a three-phase bridge supplying a wye-connected load in
which the a-phase, b-phase, and c-phase resistances are 2, 4, and 4 Q,
respectively. Given that the dc supply voltage is 100 V and the control
strategy is six-step operation, sketch the a-phase line-to-neutral voltage
waveform.

Figure 10P-2 illustrates a circuit that can be used to avoid shoot-through. If
5V logic is used, the gate threshold turn-on voltage is 3.4 V, and the resis-
tor is 1 k€2, compute the capacitance necessary to assure that gate turn-off
will occur 1.5 us before the second transistor of the pair is gated on.
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Figure 10P-2 Circuit than can be used to avoid shoot-through.

10.11

10.12

10.13

10.14

10.15

10.16

Consider the 3-hp induction motor whose parameters are listed in
Table 6.10-1. Plot the torque-speed and dc current-speed curves if it is
being fed from a three-phase bridge in six-step operation, assuming that
the dc voltage is 560 V and the frequency is 120 Hz. Neglect harmonics.

Consider the system discussed in Problem 11. Compute the effect of
the fifth and seventh harmonics on the average torque if the machine is
operating at a slip of 0.025 relative to the fundamental component of the
applied voltages.

A six-step modulated drive with a dc voltage of 600 V and a duty cycle
of 0.75 is used to drive a permanent-magnet ac machine. At a certain
operating speed, the fundamental component of the stator frequency is
300 Hz. If the switching frequency is 10 kHz, compute the amplitude of
the strongest two harmonics in the region of 50 kHz.

A permanent magnet ac machine is to be operated from the six-step mod-
ulated three-phase bridge. The dc voltage is 100 V, and the desired g-
and d-axis voltages are vy, = 50 Vand v/ =10 V. Specify the duty-cycle
d and the relationship between 6, and 6, such that these voltages are
obtained.

Derive (10.5-17) and (10.5-18) from Figure 10.5-4.

Consider the 3-hp induction motor in Table 3.9-1. The machine is being
fed from a sine-triangle modulated three-phase bridge with v, = 280 V. If
the machine is being operated at a speed of 1710 rpm and the frequency
of the fundamental component of the applied voltages is 60 Hz, plot the
torque versus duty cycle as the duty-cycle d is varied from 0 to 5.
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10.17

10.18

10.19

10.20

A three-phase four-pole permanent magnet ac machine has the param-
eters r, = 2.99 Q, L, = 11.35 mH, and 4), = 0.156 V -s/rad is operated
from a current-source modulated inverter with v,;, = 140 V. If it is being
operated at 2670 rpm, plot the locus of points in the g-axis current
command versus d-axis current command plane that describes the limits
of the region over which the current command can be expected to be
obtained.

Rederive (10.11-9)—(10.11-11) if a resistive term is included in the load
model (10.11-7) and (10.11-8).

Ignoring stator resistance, and taking the synchronous reference frame to
be the rotor reference frame, express Ly, e,r, and e,y in terms of electri-
cal rotor speed for a surface mounted (nonsalient) permanent magnet ac
machine.

Ignoring stator resistance, and assuming that the rotor flux linkages in
the synchronous reference frame are constants, express Ly, e,r, and ey
for an induction machine in terms of the g- and d-axis rotor flux link-
ages and the electrical rotor speed. As an aside, because the rotor winding
are shorted, their time derivative tends to be small, which leads to this
approximation—it is akin to putting the model in subtransient form in
the case of synchronous machines.
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Direct-Current Machine and Drive

11.1 Introduction

The direct-current (dc) machine is not as widely used today as it once was. The dc
generator has been replaced by power electronics, which convert alternating cur-
rent into direct current with provisions to control the magnitude of the dc voltage.
In drive applications, the dc motor is being replaced by the voltage-controlled
permanent-magnet ac machine (brushless dc drive) and/or the field-orientated
induction motor. Although the analysis of a dc machine does not require a change
of variables, it is still desirable to devote some time to the dc machine and dc drive
since it is sometimes used as a low-power drive motor. There is another and per-
haps more important reason to consider the dc machine. Although maintenance
issues hamper the use of dc machines, this device is the only electric machine
that is designed with the stator and rotor mmf’s orthogonal to one another, which
inherently produces maximum torque per ampere. With the advent of power
electronics, there has become a huge effort to control the permanent-magnet ac
and induction machines so as to emulate the characteristics of the dc motor. In
this chapter, we will treat the dc machines sufficiently to introduce the reader to
the operating principles of dc machines with a focus on the shunt-connected and
permanent-magnet dc machine and drive, thus setting the stage for a comparison
of the operating characteristics with the voltage-controlled brushless dc drive and
the field-oriented induction motor drive.

A disassembled two-pole 0.1-hp 6 V 12,000 r/min permanent-magnet dc motor
is shown in Fig. 11.1-1. The magnets, which replace the stator field winding, are
samarium cobalt and the device is used to drive hand-held battery-operated surgi-
cal instruments.

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/krause_aem4e
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Figure 11.1-1 Two-pole 0.1-hp 8V 12,000 r/min permanent-magnet dc motor (Courtesy
Vick ElectroMech.)

11.2 Commutation

An elementary dc machine is shown in cross section in Figs. 11.2-1 and 11.2-2. The
field winding is carrying a direct current i; into the paper at f, and out at f] and
then in atf, and out at ;. A voltage v, is applied across f; and f;. With positive i,
the field winding creates a mmf that is stationary and positive in the f axis.

The armature or rotor consists of two parallel windings: the a winding and the
A winding. Each winding has four coils with each coil connected to two segments
of the commutator. The commutator is fixed to the rotor and makes contact with
carbon brushes. As the rotor rotates, the commutator segments slide against the
brushes. This action connects the rotating circuits (a and A windings) to station-
ary terminals denoted as v,, which are connected to a dc source or to a load if the
device is operating as a generator. Note that in Fig. 11.2-1 the dc i, is flowing into
the top brush, which is straddling two of the eight segments of the commutator.
Each segment is insulated from the others. The top brush is short-circuiting the
A, coil; the bottom brush is short-circuiting the a, coil. In Fig. 11.2-2, the brushes
are not commutating any windings. Sinusoidal voltages are induced in each of the
coils due to the constant field current or permanent magnet producing a station-
ary mmf; and the windings rotating in this constant mmf,. Due to the action of
the commutator, the mmf, (a axis) of the rotor is also essentially stationary and
orthogonal to the field mmf (f axis).

The full-wave rectified voltages in Figs. 11.2-1 and 11.2-2 are the open-circuit
voltages of one parallel path between brushes. This is referred to as the back volt-
age or back emf. This induced voltage exists only when the rotor is turning. Many
of the comments made in Chapter 4 can be made here regarding the back voltage.
In Figs. 11.2-1 and 11.2-2, the parallel windings of each consist of four coils and
produce an mmf that is orthogonal to the mmf produced by the stator winding,
the f winding.
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Figure 11.2-1 A dc machine with parallel armature windings.
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Figure 11.2-2 Same as Fig. 11.2-1 with rotor advanced approximately 22.5°

counterclockwise.



11.3 Voltage and Torque Equations

It is important to understand that the commutator and brush combination is to
change the direction of current flow in the rotor windings so that positive current
into the machine flows into the paper over the top part of the rotor and out over
the bottom part for motor action. The current is reversed for generator action.

11.3 Voltage and Torque Equations

Itis advantageous to first consider the dc machine with a field and armature wind-
ing before turning to the permanent-magnet device exclusively. Although rigor-
ous derivation of the voltage and torque equations is possible, it is rather lengthy,
and little is gained since these relationships may be deduced. The armature coils
revolve in a stationary magnetic field established by a current flowing in the field
winding. We have established that a voltage is induced in these coils by virtue of
this rotation. However, the action of the commutator causes the armature coils
to appear as a stationary winding with its magnetic axis orthogonal to the mag-
netic axis of the field winding. In other words, the stator and rotor mmf’s are
orthogonal. Therefore, voltages are not induced in one winding due to the time
rate-of-change of the current flowing in the other (transformer action). Mind-
ful of these conditions, we can write the field and armature voltage equations in
matrix form as

v re + pL 0 i
1| = | PR f (11.3-1)
va a)rLAF ra + pLAA ia

where Lz and L,, are the self-inductances of the field and armature windings,
respectively, and p is the short-hand notation for the operator d/dt. The rotor speed
is denoted as w,, and L ,5, is the mutual inductance between the field and the rotat-
ing armature coils that is readily determined from the open-circuited voltage. The
above equation suggests the equivalent circuit shown in Fig. 11.3-1. The voltage
induced in the armature circuit, w,L,pi;, is commonly referred to as the counter
or back voltage. It also represents the open-circuit armature voltage from which

.

—> <« +

+
tl la
vy Lpp % a),LAFlf Va

Figure 11.3-1 Equivalent circuit of a dc machine.
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L, can be readily determined. The equivalent circuit shown in Fig. 11.3-1is for a

separately excited machine where v; is from a separate dc source. When the field

and armature are connected to the same dc source, Vp =V, it is a shunt machine.
A substitute variable that is often used is

k, = Lgis (11.3-2)

We will find that this substitute variable is particularly convenient and fre-
quently used. Even though a permanent-magnet dc machine has no field circuit,
the constant field flux produced by the permanent magnet is analogous to a dc
machine with a constant k.

An expression for torque can be established by noting that the electric power
supplied to the armature can be expressed as v,i,. The voltage dropped across the
armature resistance in Fig. 11.3-1is i , which when multiplied by i, is the arma-
ture resistive power loss. The voltage ,L i, in Fig. 11.3-1, when multiplied by
i,, represents the power supplied to the mechanical system, which can also be
expressed as T,w,. Equating these two expressions

T, = oL i, (11.3-3)

Dividing both sides by w,,

T, = Lypii, (11.3-4)
The torque and rotor speed are related by
dw,
T,=J—F+Buo,+T, (11.3-5)

where J is the inertia of the rotor and rigidly connected mechanical load. The units
of the inertia are kg- m? or N-m - s2. A positive electromagnetic torque T, acts to
turn the rotor in the direction of increasing 6,. The load torque T is positive for a
torque, on the shaft of the rotor, that opposes the positive electromagnetic torque
T,. The constant B,, is a damping coefficient associated with the mechanical rota-
tional system of the machine. It has the units of N- m-s /rad, and it is generally
small and often neglected.

Although we will focus on the permanent-magnet dc motor, it is worthwhile
to take a moment to mention that we have established the basis for several types
of dc machines. In particular, the machine shown in Fig. 11.3-1 is a separately
excited dc machine. If we connect the field winding in parallel with the armature
winding, it becomes a shunt-connected dc machine. If the field winding is con-
nected in series with the armature winding, it is a series-connected dc machine. If
two windings are used, one in parallel with and another in series with the arma-
ture, it is referred to as a compound-connected dc machine. Clearly, this is an
overly simplistic description, and the reader is referred to [1] for a more detailed
consideration of these machine types.
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Before proceeding, it is appropriate to briefly mention generator action even
though the dc generator has been replaced by the ac-to-dc converter. We see from
Fig. 11.3-1 that if ,L,i; is greater than v,, i, is reversed and we have genera-
tor action. In this case, T, is negative since the dc machine is being driven and
T,, (11.3-4), is also negative. In (11.3-5), dd“;’ is zero in the steady state and B,,, is
typically small.

11.4 Permanent-Magnet dc Machine

In the case of the permanent-magnet dc machine, LI, is replaced with k, where-
upon the steady-state armature voltage equation becomes

Vo =11, + ko, (11.4-1)

If (11.4-1) is solved for I, and submitted into (11.3-4) with LI, replaced by k,, the
steady-state torque may be expressed as

T, = k,I,

k,V, - Ko,
_ (11.4-2)

Ta

The steady-state torque versus speed characteristic is shown in Fig. 11.4-1.

It is apparent from Fig. 11.4-1 that the stall (w, = 0) torque could be made
larger for a given armature voltage by reducing r,. Although the machine may
be designed with a smaller armature resistance, there is a problem since, at stall,
the steady-state armature current is limited by the armature resistance, hence,
for a constant V,, reducing r, will result in a larger I, at stall which can cause
damage to the armature winding, commutator, and/or brushes. On the other
hand, increasing the starting torque by reducing r, causes the torque versus speed
characteristics to have a steeper slope that results in a smaller change in speed for
a given change in load torque during normal (near-rated) operation. If, however,

Figure 11.4-1 Steady-state torque versus T, KV,
speed characteristic of a permanent-magnet /' =
dc machine. 9 “

=

)
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the armature voltage is reduced during the starting period to protect the brushes,
the desirable characteristic of a small speed change for load torque variations
during normal operation could be achieved. In fact, controlled regulation of
the armature voltage is generally employed for large horsepower machines by
using a converter; however, low-power permanent-magnet dc machines are often
supplied from a battery and, therefore, a large armature resistance is necessary
in order to prevent any damage during the early part of the stating period.
Fortunately, a small speed variation during load torque changes is not required in
many applications of the permanent-magnet dc machine; therefore, steep torque
versus speed characteristics are not necessary.

Example 11A Calculating machine parameters.
A permanent-magnet dc motor is rated at 8V with the following parameters:
r,=7Q,L,, =120mH, k; =2 0z- in/A, and J = 150 0z in - s%. (a) Determine
the stall torque and the no-load speed. (b) A torque load of 0.5 oz - in is applied,
determine the steady-state w,. (c) Determine the efficiency at this load.

First, let us convert k; and J to units that we have been using. In this regard,
we will convert the inertia to kg - m?, which is the same as N - m - s2. To do this, we
must convert ounces to Newtons and inches to meters. Thus,

g= 150x107° 1 o qg-s kg - m? (11A-1)
(3.6)(39.37)

We have not seen k; before. It is the torque constant and, if expressed in the
appropriate units, it is numerically equal to k,. When k, is used in the expression
for T (T, =k,i,), it is often referred to as the torque constant and denoted k. When
used in the voltage equation, it is typically denoted k,. Now, we must convert oz - in
to N - m, whereupon k; equals our k,; hence,

k, = (&6)(2737) =141x102N-m/A=141x102V-s/rad (11A-2)
(a) The stall torque is
T,= kvrja =% X710_2)(6) =121x102N-m (11A-3)
The no-load speed is
w, = Voo 6 _ 425.5rad/s (11A-4)
k, 141x107?
(b)
0.5 =35%x103N-m (11A-5)

L~ (3.6)(39.37)
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From (11.4-1) with T, =T},

Va TLra 6 (3-5 X 10_3)(7)
Or=1"" T2 T 2 2
k, k2 1.41x10 (1.41 X 1072)2
=425.5-123.2 = 302.3rad/s (11A-6)
©)
T(:‘ = kaa
3.5x107% = (1.41 x 1079,
3.5x1073
=222 —0248A 11A-7
¢ 1.41x1072 ( )
P = T, I2 = (7)(0.248)* = 0.431 W (11A-8)
P, = VI, = (6)(0.248) = 1.488 W (11A-9)
P,y = Py, — Pposs = 1488 — 0.431 = 1.057 W (11A-10)
P
Eff. =~ 5 100 = 2098 o 100 = 719 (11A-11)
P, 1.488
Note that
P, =T,w, =3.5x107%x302.3 = 1.058 W (11A-12)

which is essentially equal to (7A-10).

11.5 dc Drive

Since the dc machine plays a role in some drive applications, a brief look at a volt-
age controlled drive is appropriate. Our focus will be on the permanent-magnet
dc machine supplied from a two-quadrant dc-to-dc converter. Dynamic and
steady-state performances are illustrated. Since the dc-to-dc converters used in
dc drive systems are often called choppers, we will use dc-to-dc converter and
chopper interchangeably. In this section, we will analyze the operation and
establish the average-value model for a two-quadrant chopper drive.

A two-quadrant dc converter is depicted in Fig. 11.5-1. The switches S1 and S2
are transistors. They are assumed to be ideal; that is, if S1 or S2 is closed, current
is allowed to flow in the direction of the arrow; current is not permitted to flow
opposite to the arrow. If S1 or S2 is open, current is not allowed to flow in either
direction regardless of the voltage across the switch. If S1 or S2 is closed and the
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Figure 11.5-1 Two-quadrant chopper drive.

current is positive, the voltage drop across the switch is assumed to be zero. Sim-
ilarly, the diodes D1 and D2 are ideal. Therefore, if the diode current i, or iy, is
greater than zero, the voltage across the diode is zero. The diode current can never
be less than zero.

Waveforms of the converter variables during steady-state operation are shown
in Fig. 11.5-2. Therein, the switching period T is made large relative to the
armature time constant v, = L,,/r, for the purpose of depicting the transient
of the armature current. Normally, the switching period is much smaller than
the armature time constant and the switching segments of i, are essentially
sawtooth in shape. This is portrayed later in this section. With a two-quadrant
chopper, the armature voltage cannot be negative (v, >0); however, the arma-
ture current can be positive or negative. That is, I, and I, (Fig. 11.5-2) can
both be positive, or I; can be negative and I, positive, or I, and I, can both
be negative. In Fig. 11.5-2, I; is negative with I, positive and the average
value of i, is positive. The mode of operation depicted is motor action if w, is
positive (ccw).

During interval A, S1 is closed and S2 is open and, at the start of interval A,
i, =1I,, which is negative. Since S2 is open, a negative i, (I;) can only flow through
D1. 1t is important to note that —i,,, and —ig, are plotted in Fig. 11.5-2 to allow
ready comparison with the waveform of i,, since they are opposite to positive i,.
Let us go back to the start of interval A. How did i, become negative? Well, dur-
ing the interval B in the preceding period, S2 was closed with S1 open. With S2
closed, the armature terminals are in effect short-circuited and the counter emf
has driven i, negative. Therefore, when S1 is closed and S2 is opened at the start
of interval A, the source voltage has to contend with this negative I,. We see from
Fig. 11.5-2 that the average value of i, is slightly positive; therefore, vg is larger than
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Figure 11.5-2 Steady-state operation of a two-quadrant dc converter drive.

the counter emf and at the start of interval A when vy is applied to the machine
the armature current begins to increase toward zero from the negative value of
I,. Once i, reaches zero, the diode D, blocks the current flow. That is, ij;, cannot
become negative (cannot conduct positive i,); however, S1 has been closed since
the start of interval A and since ig, can only be positive, S1 is ready to carry the pos-
itive i,. The armature current, which is now iy, , continues to increase until the end
of interval A (1,).
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At the beginning of interval B, S1 is opened and S2 is closed; however, S2
cannot conduct a positive armature current. Therefore, the positive current (I,)
is diverted to diode D2, which is short-circuiting the armature terminals. Now,
the counter emf has the positive current (I,) with which to contend. It is clear
that if the armature terminals were permanently short-circuited, the counter emf
would drive i, negative. At the start of interval B, the counter emf begins to do
just that; however, when i, becomes zero, diode D2 blocks i, and the negative
armature current is picked up by S2, which has been closed since the beginning
of interval B, waiting to be called upon to conduct a negative armature current.
This continues until the end of interval B, whereupon we are back to where
we started.

Itis apparent that if the mode of operation is such that I, and I, are both positive,
then the machine is acting as a motor with a substantial load torque if e, is positive
(ccw). In this mode, either S1 or D2 will carry current during a switching period T.
If both I, and I, are negative, the machine is operating as a generator, delivering
power to the source if w, is driven ccw. In this case, either S2 or D1 will carry
current during a switching period.

11.5.1 Average-Value Time-Domain Block Diagram

The average-value time-domain block diagram for the two-quadrant chopper drive
system is shown in Fig. 11.5-3. From Fig. 11.5-2, the average armature voltage may
be determined as

1 f T
bo== / vsd§+/ 0d¢ (11.5-1)
¢ T 0 t

1

Since t; = kT, where k is referred to as the duty cycle, the average armature voltage
becomes

= kv, (11.5-2)

0

s Va .
h@ H/ <\ e /r, P [y N —
+ N T,p+ 1
| B
ko, ®
k

v J,+ B, \E

Figure 11.5-3 Average-value model of two-quadrant dc converter drive.
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In Fig. 11.5-3, the bars over the variables denote average values.

The starting characteristics of a permanent-magnet dc machine with a
two-quadrant chopper drive are depicted in Fig. 11.5-4. The machine parameters
arer,=7Q,L,, =120mH, k, =1.41 x 1072 V -s/rad, and J = 1.06 X 1076 kg - m?;
rated voltage is 6 V. Here, the switching frequency f; is set to 200 Hz and the
source voltage to 10 V. Typically, the switching frequency is much higher, gener-
ally greater than 20 kHz. The frequency was selected to illustrate the dynamics
introduced by the converter. Even at this low switching frequency, the switching
period T is much less than the armature time constant z,. Thus, the armature
current essentially consists of piecewise linear segments about an average
response. In Fig. 11.5-4, the duty cycle is stepped from 0 to 0.6, corresponding
to a step increase in average applied voltage from 0 to 6 V. The start-up response
established using the average-value model is superimposed for purposes of
comparison. As shown, the only salient difference between the two responses is
the “sawtooth” behavior of the armature current due to converter switching. The
difference in rotor speeds is indistinguishable.

Ir g
05}
0

0
Ir i

400 o,
200 - |
|
0.1s
0

Figure 11.5-4 Starting characteristics of a permanent-magnet dc machine with a
two-quadrant dc/dc converter drive.
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11.5.2 Torque Control

The parameters of a permanent-magnet dc machine are V, = 6 V (rated),
r, =79, k, = 1.41x107% V-s/rad, L,, = 120 mH, J = 1.06 kg-m?, and
B, = 6.04 X 107® N-m-s. We are to limit the commanded torque T to
0.423x 1072 N-m or I} = 0.3 A where the asterisk denotes commanded values.
The control is shown symbolically in Fig. 11.5-5.

Since the current is controlled, the electric dynamics are neglected; there-
fore, only the mechanical dynamics are considered. The equations involved in
Fig. 11.5-5 are

V,=rI +wk, (11.5-3)
) dw
T:=J dt’ + B0, + T;, (11.5-4)

where T# = kI = 0.423 X 1072 N - m. The load line is

T, = Kw? (11.5-5)
where

K=5529%10°%N-m-s? (11.5-6)

This intersects rated-V, current versus speed plot at Operating Point 1 where
, = 276.6 rad/s, as shown in Fig. 11.5-6.

The dc machine is operating at Point 1. The commanded torque is suddenly
switched to % the original value which intersects the limiting torque (I;) at
Operating Point 2 where o, = 195.6 rad/s. The electromechanical dynamics are

, dw
T:=J dt’ + B0, + T;, (11.5-7)
T I*
¢ L N Current
k, control

A

v

()

Figure 11.5-5 Torque control.
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Figure 11.5-6 Armature current versus speed trajectory during T; switching.

Assuming the torque control is functioning perfectly, the rotor slows and the
steady state is reached at Operating Point 2. The voltage at Operating Point 2 is

V, =10 + ko,
= (7)(0.15) + (1.41 x 107%)(195.6)
=1.05+2.76=3.8V (11.5-8)

The commanded torque T} is then returned to the original value. The rotor
speeds up and reaches the steady state at Operating Point 1. The trajectory from
Operating Point 1 to Operating Point 2 and then back to 1 is shown in Fig. 11.5-6.

Reference

1 P. C. Krause, Analysis of Electric Machinery, New York, McGraw-Hill Book Com-
pany, 1986.

Problems

11.1 A permanent-magnet dc motor has the following parameters: r, = 8 Q and
k, = 0.01 V-s/rad. The shaft load torque is approximated as T; = Ko,,
where K =5% 107 N - m - s. The applied voltage is 8 V and B,, = 0. Calculate
the steady-state rotor speed w, in rad/s.
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11.2 A permanent-magnet dc motor is driven by a mechanical source at
3820rev/min. The measured open-circuit armature voltage is 7V. The
mechanical source is disconnected, and a 12V electric source is connected
to the armature. With zero-load torque, I, = 0.1 A and w, = 650 rad/s.
Calculate k,, B,,, and r,,.

11.3 The parameters of a permanent-magnet dc machine are r, = 6 Q and
k, = 2%x107% V-s/rad. V, can be varied from zero to 10 V. The device is
to be operated in the constant-torque mode with T, = 4x 1073 N-m. (a)
Determine V, for w, = 0. (b) Determine the maximum w, range of the
constant-torque mode of operation (maximum o, with T, =4x 1073 N-m
and V,=10V).

11.4 Sketch Fig. 11.5-2 for generator action; i.e., iy; and i, equal to zero.
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Torque Control of Permanent-Magnet and Synchronous
Reluctance Machines

12.1 Introduction

In an electric vehicle, the accelerating force is proportional to the electromagnetic
torque of the propulsion motor(s). The angle of the accelerator pedal determines
the desired accelerating or tractive force, which, in turn, determines the desired
electromagnetic torque of the motor. This chapter describes an approach to torque
control of permanent-magnet and reluctance machines, which are used in many
automotive applications. The control is power electronic based, which controls
the amplitude and frequency of the applied stator voltages and currents. This
is accomplished very fast compared to the mechanical dynamics of the vehicle.
Hence, it is reasonable to neglect the electrical dynamics associated with the
motor and associated power electronic controls. That is, even though the motor
speed and/or torque vary with respect to time, the steady-state equations of the
motor may be used to predict the mechanical dynamics of the vehicle (e.g., its
acceleration/deceleration).

In Chapter 4, we considered the brushless dc machine with L, and L, being
equal. However, in the permanent-magnet motors commonly used in electric vehi-
cles, these inductances are considerably different, which gives rise to a reluctance
torque that can be significant. The device no longer operates as a brushless dc
machine; however, many of the equations given in Chapter 4 apply equally well to
this device.

In a reluctance machine, we no longer have a permanent magnet (/1;,’1 = O);
we have only reluctance torque. In this case, the device becomes a synchronous
reluctance machine, which is also treated in this chapter.

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/krause_aem4e

321


http://www.wiley.com/go/krause_aem4e

322

12 Torque Control of Permanent-Magnet and Synchronous Reluctance Machines

12.2 Torque Control of a Permanent-Magnet AC
Machine

In earlier introductory texts [1, 2], we considered torque control of a small
permanent-magnet machine with Lq = L,;. Therein, it was assumed that the
current control was very fast. Thus, the stator currents settled to their steady-state
values a few milliseconds after a step change in torque command. This, along with
the assumption that L, = L;, made it easy to establish the response of the drive.

In this section, we will consider a much larger machine similar to that used in an
automotive electric drive [3]. It is an interior permanent-magnet (IPM) machine
with the following parameters: P = 8, \/5 I nax = 222 A, \/5 Vs max = 2309V,
A, =02V-s,r,=0.09Q, L, =2mH, and Lq = 3.3 mH. A cross-sectional view
of a two-pole IPM machine is shown in Fig. 12.2-1. Note that L, > L, since the
magnets are embedded in the direct axis of the rotor (there is less magnetic steel
along the direct axis), whereas in [1, 2], arc-shaped magnets were mounted on
the surface of the rotor and L, ~ L,. The equations of the eight-pole machine
considered herein are the same as for the two-pole machine in Fig. 12.2-1 with
the usual substitutions 6, = ’5’9,,,, and w, = ga)rm.

From (4.3-27), the steady-state torque can be expressed in terms of the g- and
d-axis components of the stator current as

3\ (P
Te= (5) (5) [Anls + La = LIG TG ] (12.2-1)

Figure 12.2-1 Two-pole
interior permanent-magnet
ac machine.
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Although this expression is valid for dynamic as well as steady-state operating
conditions, we will initially consider steady-state operation. The peak value of
the stator currents is typically constrained to be less than the maximum value.
Mathematically,

(12.2-2)

Is,max

There is an infinite number of values for Iy and I,_that give the same value of T,
as shown in Fig. 12.2-2. Therein, the dashed circles represent constant-I, contours.
Operating conditions A, B, and C are the optimal Igs and I;s for T, values of 100,
200, and 400 N -m, respectively. These optimal operating points occur when a
constant-T, contour is tangent to a constant-I; contour. The plots in Fig. 12.2-2 are
independent of rotor speed and positive and negative torque form a mirror image.
The plots shown in Fig. 12.2-3 are the optimal currents versus torque for Iy <Tg ...
Therein, it is assumed that (12.2.2) is the only constraint present. If there is an
additional voltage constraint, it may not be possible to achieve the currents
needed to produce the desired torque at high rotational speeds. For example, if
we assume w, = 2000 rad/s and it is desirable to have 400 N - m of torque, it would

T | 7 T
200 : =
, Va=ma
,’G ] ‘ \\0
100 / ]
V2 =134A 7, 0/
V21,=76 A /
0 Sl
I ] R /
%QQ
-100 Ve
___________ ,"I C
200 s ]
| 1 / 1
—-100 0 100 200

qs

Figure 12.2-2  Contour plot for various values of torque, T,. Points A, B, and C give
optimal currents for T, = 100, 200, and 400 N - m.
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Figure 12.2-3 Optimal currents versus torque for /. </, .. assuming there is no

constraint on voltage.

require more than 1000V of V7 in order to obtain the desired current shown in
Fig. 12.2-3. Clearly, this is far above the maximum peak voltage of 230.9 V.

12.2.1 Maximum Steady-State Torque Versus Speed

In addition to the current constraint given by (12.2-2), the peak ac voltage is also
constrained to be less than a maximum value. Mathematically,

V2V, =/ (V)" + (V1) < V2V, e (12.2-3)

where
Vi =rdi + oLl + o, (12.2-4)
Vi =rdl — oLl (12.2-5)

Equations (12.2-2) and (12.2-3) represent inequality constraints, whereas
(12.2-4) and (12.2-5) are called equality constraints. Of practical importance
is the maximum and minimum torque that can be developed by the machine
with all constraints satisfied. Since (12.2-4) and (12.2-5) involve rotor speed, the
maximum and minimum torque will be functions of speed. Equation (12.2-1)
is called an objective function (function to be maximized or minimized)
while (12.2-2)-(12.2-5) are constraint equations. Finding the maximum or
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minimum torque with all constraints satisfied is difficult to accomplish
analytically; however, there are several programs such as MATLAB [4] and
Python [5], for example, that can be used to do this numerically and quickly.
A systematic step-by-step procedure for calculating maximum and minimum
torque as a function of speed is shown below.

1) For 0 <, <@, pax

2) Using MATLAB’s fmincon function, find Ij; and I, that maximizes
T, = G) (5) [ 00, + (Ly — LOIET, | while satisfying all constraints

3) Calculate corresponding T, max(car) Vis-and V! . Resulting T, ., (w,) is plotted
in Fig 12.2-4. The corresponding I, and I’ are plotted in Fig. 12.2-5, and the
corresponding Vg, and V_are plotted in Flg 12.2-6.

4) Using MATLAB’s fmlncon function, find Iy, and I’ that minimizes

T, = (2) ( ) (00 + (Ly — LOIET, | while satlsfylng all constraints

5) Calculate corresponding T' (cor) (plotted in Fig 12.2-4).

e, min

The maximum and minimum torque are plotted as a function of electrical rotor
speed in Fig. 12.2-4 for speeds up to w, = 2000 rad/s. As shown, the largest positive
and negative torque that can be developed occurs when the electrical rotor speed is
less than 360.7 rad/s, where only the 222 A stator current limit comes into play. In
this range, T, ;,(w,) is the mirror image of T, ,...(®,). Also, it is readily verified
that the reluctance component of torque is 44% of the total torque.

500 T T T T T T T T T
T X 360.7
400 oM Y 399.1 i
X 541.1
300 L . Y 295.4 i
200 Voltage u
Current limited “.";jr " Voltage
100 - limited | limited
= 0 1 Motor operation
z ‘ Generator operation ¥%22%3
-100
-200
=300 +
T, in "X 5411
—-400 Gaos Y -329.8 .
Y3991, I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

w,, rad/s

Figure 12.2-4 Maximum and minimum torque as a function of electrical rotor speed.
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Figure 12.2-5 Stator currents for maximum torque.
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Figure 12.2-6 Stator voltages for maximum torque.
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As shown in Fig. 12.2-6, as the rotor speed increases, the voltages needed to
produce the required currents increase in magnitude. At an electrical rotor speed
of 360.7rad/s, the stator voltage limit of 230.9V is reached. For rotor speeds
between 360.7 and 541.1 rad/s, the motor operates at the maximum current and
voltage as shown in Figs 12.2-5 and 12.2-6, respectively. That is, V=V .. and
Iy = I ma- Although I is constant in this interval, the magnitude of I, decreases
and I increases with the corresponding torque decreasing as w, increases.
Similarly, V is constant; however, Vg, and V) both change as a function of speed.
As shown in Fig. 12.2-4, the absolute magnitudes of the maximum and minimum
torque differ slightly when the voltage limit is involved due to the resistive drop
in voltage. At the end of the region (@, = 541.1 rad/s), the reluctance torque is
55.6% of the total maximum torque.

For rotor speeds greater than 541.1rad/s, the motor continues to operate at its
voltage limit V| = Vs mao however, the current is now less than the maximum,
I <Ig nax @s shown in Fig. 12.2-5. Although a larger current could produce a
larger torque, the voltage constraint limits the peak current I to a value less than
rated. At the end of the region, the reluctance torque makes up 41.8% of the total
torque.

The maximum mechanical power (product of maximum torque and mechan-
ical speed) and efficiency (mechanical power out divided by electric power
in) are shown in Figs. 12.2-7 and 12.2-8, respectively, for motor action. The
power increases linearly for rotor speeds up to 360.7 rad/s. Maximum power is

45 T T T T T T T T T
X 541.1
40 L Power, kW Y 39.96 |

Y 35.99 X 2000
30 Y 34.00 -

25 + :
20 :
15 b
10 - :

0 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

w,, rad/s

Figure 12.2-7 Maximum mechanical power versus rotor speed.
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Figure 12.2-8 Efficiency for maximum T,.

approximately 40 kW, which occurs at a rotor speed of approximately 450 rad/s.
For larger speeds, maximum power falls off slightly approaching 34 kW at an
electrical rotor speed of 2000 rad/s. Maximum efficiency of 95% is achieved at
2000rad/s. It is important to note that only the stator resistive losses have been
considered here. Core losses (hysteresis and eddy current) in both the stator and
rotor will also exist in practice lowering the efficiency somewhat. A more detailed
analysis of losses and efficiency for an IPM motor used in hybrid vehicles is
provided in [8].

Before considering the phasor diagrams, let us step back and talk about the nota-
tion being used. Due to the power electronics control, the change in frequency
of applied voltages is nearly instantaneous; however, the change in rotor speed
is much slower. Therefore, the electrical variables of the machine are essentially
always in synchronism with the applied voltages. That is, w, = @,, where w, is the
electrical angular velocity of the rotor. Perhaps we should use an “e” superscript
instead of “r” on the electrical variables; however, we will continue with “r” and
realize that w, = w,.

Now, the phasor diagrams are shown in Fig. 12.2-9 for w, = 0, 360.7, 541.1, and
2000 rad/s. The phasors are determined using

V2F,, = Fl, - jF, (12.2-6)

where F is either V or I. In each case, we see motor action. That is, the torque acts
in the counterclockwise direction (direction of rotation).
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Figure 12.2-9 Phasor diagrams at maximum torque for w, = 0, 360.7, 541.1, and
2000rad/s.

It is important to note that T, ...(w,) and T, ;,(w,) are, respectively, the
maximum and minimum torque that can be developed at a given rotor speed.
Typically, the desired or commanded torque, denoted T, is somewhere in
between these limits. In this case, it is desired to select I ;S and IZS that minimizes

V2L = /(1) + (1)’ (12.2-7)
while satisfying the following constraints
% 3 p r roqr
Te = (5) (5) [’V:ans +(Lg - Lq)IqsIds] (122-8)
V (VI;S)Z + (Vgs)z S \/EVS,max (122-9)

where Vgs and V;S are given by (12.2-4) and (12.2-5). Note that (12.2-2) is no
longer a constraint. Instead, (12.2-7) becomes the new objective function (to be
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minimized). Equations (12.2-8) and (12.2-9) along with (12.2-4) and (12.2-5) form
the new set of constraint equations. Optimal Iy, and I will be functions of both
T; and w, since both variables appear in the constraint equations. A procedure
for calculating optimal Iy, and I, is shown below.

1 For0<w,<w

r, max

2 ForT, (0, =0)<T; <T, ..(0,=0)
3 IfT; > T, . (@,) (desired T, cannot be achieved at given o,)
4 Set I (@,, TF) = I} calculated previously (set to a value that maximizes T,)
5 Set I (w,, Ty ) = I, calculated previously (set to a value that maximizes T,)
6 IfT; < T, ., (@,) (desired T; cannot be achieved at given w,)
7 Set I¥ (w,, Ty ) = I calculated previously (set to a value that minimizes T,)
8 Set I (a)r, T:) = I’ calculated previously (set to a value that minimizes T,)
9 If Tymin @) ST, < T, s (w,)
10 Using MATLAB’s fmincon function, find Ij; and I} that minimizes

1/ (Iq’s)2 + (I;S)2 with a set of new constraints satisfied
11 SetI¥ (w,, Ty ) = I7,.
12 Set I (@, Ty ) = I,

The resulting optimal I;y and I'" are plotted as a function of desired torque
T; and electrical rotor speed w, in Figs. 12.2-10 and 12.2-11, respectively.

200

A

e
qs’

1

Figure 12.2-10 Plot of 7} (w,, T} ).

rr'e
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Figure 12.2-11 Plot of -/ (w,, T;).

The numerical data used to generate these figures can be implemented as
two-dimensional look-up tables in a torque control system as described in the
next section. As shown in Figs. 12.2-10 and 12.2-11, for rotor speeds less than
360.7rad/s, I;; and I are independent of speed and depend only on Ty, consistent
with Fig. 12.2-3. However, when the rotor speed becomes larger than 360.7 rad/s,
the voltage constraint comes into play, whereupon I;; and I’* become functions

of both T} and w,.

12.3 Simulation of a Permanent-Magnet AC Machine
with Torque Control

We are now able to establish a reduced-order model of a permanent-magnet ac
machine with torque control. It is assumed that the inverter operates very fast,
nearly instantaneously, to establish vj, and v/, . In fact, we are going to assume
that vy, and v/, are equal to their desired or commanded values vis and v/ that are
established by a current controller. Lower-case variables are used here since we
are no longer restricting operation to steady-state operation at constant speed and
torque.

A block diagram of the drive system is shown in Fig. 12.3-1. As shown, the
system includes a permanent-magnet ac machine, an inverter and modulator,
a current controller, and a table lookup block that establishes the desired (com-
manded) igs and i;. The commanded currents are supplied to a current control
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Figure 12.3-1 Block diagram of torque-controlled drive system.

block that determines the commanded vgg and v/, which are supplied to the
modulator and inverter. Detailed descriptions of the inverter and modulator are
provided in Chapter 10. As noted previously, we are going to assume that v and
v;s are equal to their commanded values vg’; and v;’;, which will later be shown to
be a very reasonable assumption.

The current controller is detailed in Fig. 12.3-2. The outputs of the current

control are vgg and v*, which are supplied to the modulator and inverter. The
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lqs ldr
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Figure 12.3-2 Current control.
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commanded voltages of each have two components: a feedforward component
and a feedback component. The feedforward components are

Vo= rsigs + o, (A, + Lyi, ) (12.3-1)
Vi = Tl — @, Lyl (12.3-2)

which represent the resistive and speed-voltage terms of the stator voltage
equations. The feedback components are

Vo = Ky (g5 = 1gs) (12.3-3)
Vo = Ka (155 = i3) (12.3-4)

Under the assumption that v, and V), are equal to vjg and v, it can readily
be shown (left as a homework exerc1se) that the dynarmc relatlonships between
actual and commanded currents can be expressed as

Kigs = Lgpigs + Ko (12.3-5)
Kyiys = Lapig, + Ky (12.3-6)

which represent first-order differential equations with time constants of L, /K, and
Ly/K 4. In the steady state, Iy, = It and I} = I"*. A small time constant is needed
to yield a fast response. However, the time constant should be at least an order of
magnitude larger than the switching period of the inverter (50 ps for an inverter
with a switching frequency of 20kHz). In the following studies, the values of K,
and K; were selected to yield a time constant of 2 ms, which is much larger than
the switching period but is still negligible when compared to typical mechanical
time constants, thus justifying the use of the steady-state equations for the electric
machine and associated torque control in a reduced-order simulation of the overall
drive system.

12.3.1 Electrical Dynamics

The dynamic equations of a permanent-magnet ac machine were described in
Chapter 4. The equations can be manipulated and expressed in the form of a
time-domain block dlagram as shown in Fig. 12.3-3. The inputs are v/, and
,. The outputs are lqs, and T,.

qs’ d’

12.3.2 Mechanical Dynamics

In a terrestrial vehicle (electric or otherwise), the opposing (load) forces are typi-
cally characterized as rolling resistance (due to tire deflection), grade (gravitational
forces when going up or down hill), and aerodynamic drag, which is related to
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Figure 12.3-3 Time-domain block diagram of permanent-magnet ac machine with
salient rotor.
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vehicle speed and is affected by head or tail winds. The motor load torque is pro-
portional to the net load force with the proportionality constant being related to
tire radius and gear ratios associated with the drive train. The motor load torque
is often expressed in the form

T, =K, + K0, + K;0? (12.3-7)

where K, is related to rolling resistance and grade forces, K, to friction, and K,
to aerodynamic drag, which is a nonlinear function of vehicle and/or wind speed.
The values of K, through K, depend on the vehicle as well as the terrain and one
may become as detailed as necessary. Although the values of K, through K depend
on the situation being simulated, we selected K; =6.57N-m, K, =0.0193N-m s,
and K; =9.37x107% N - m - s? corresponding to a flat (zero grade), smooth terrain
with no head or tail wind.

Under the assumption that the drive train is rigid (mechanical compliance in
shafts or gears neglected), the electromagnetic and load torques are related by

T, =J,po, + T, (12.3-8)

where J,, is the sum of the rotational inertia of the motor and the vehicle mass
reflected into an equivalent rotational inertia as viewed by the motor. The value of
J,, assumed in subsequent studies is 8.16 kg - m2.

12.3.3 System-Level Simulation Block Diagram

A system-level simulation block diagram that includes the mechanical, electrical,
and control system dynamics is depicted in Fig. 12.3-4. This diagram is in a form
that can be readily implemented in Simulink.
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Table lookup @,
T, Figs. 12.2-10 and 12.2-11

i l i
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wf
Current control
Fig. 12.3-2
vtrp‘ VZS l:p' lf/\ ,
(12.3-7)
wr
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Fig. 12.3-3 T, 4 _Z 1 o,
= Jnp

Figure 12.3-4 System-level simulation block diagram.

12.3.4 System Studies

In the following study, it is assumed that the vehicle is initially at rest (w, = 0) and
T; = 6.57 N - m. Then, at t = 2 s, the torque command is switched to 400 N - m,
which is slightly larger than maximum torque, causing the motor and vehicle to
accelerate as rapidly as possible. At t = 10 s, the torque command is switched to
—400 N - m, causing the vehicle to decelerate as rapidly as possible. This represents
a regenerative-braking event where the kinetic energy of the vehicle and motor is
converted back to electrical energy used to recharge the battery. Figs. 12.3-5,12.3-6,
and 12.3-7 show the resulting response.

Initially, the load and commanded torque are both 6.57 N - m. Att =2 s (point A
in Fig. 12.3-5), the torque command T} is switched to 400 N - m. In approximately
10 ms thereafter, the actual torque T, settles to a value very close to maximum
(399.1 N - m), which is point B. At t = 10 s (point C), the torque command is
switched to —400 N - m. In approximately 10 ms thereafter, the actual torque set-
tles to a value close to its minimum (negative maximum) at the given rotor speed
(point D). When the speed decelerates to zero speed at 16.151 s, the commanded
torque is switched back to 6.57 N - m.
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Figure 12.3-5 Torque command stepped from 6.57 to 400 N-m at t = 2 s, then to —400
att=10s.

The transient response near 2 and 10s is expanded in Fig. 12.3-6. Therein, it
is seen that the electrical and control transients subside in approximately 10 ms.
During these transients, the rotor speed and load torque do not change very sig-
nificantly. However, the electromagnetic torque changes very rapidly achieving
its new quasi-steady-state value approximately 10 ms following the step change
in commanded torque. This strongly suggests that the electrical transient may be
neglected when predicting the longer-term mechanical response.

The electromagnetic and load torque are plotted as a function of rotor speed
in Fig. 12.3-7 (torque versus speed trajectory). Therein, the electrical and control
transients from A to B and from C to D are not observable. It appears the change
in electromagnetic torque is instantaneous.



12.3 Simulation of a Permanent-Magnet AC Machine with Torque Control | 337

200 200

100 100
i O e N
0 0

-100

9.99  9.995 10 10.005 10.01 10.015 10.02
200 200

L 100 . 100
il f i
0 0

9.99  9.995 10 10.005 10.01 10.015 10.02

400 400
200 200
Te 0 T( l
0
-200 -200
9.99 9995 10 10.005 10.01 10.015 10.02
40 40
LA oy
0 0
9.99 9995 10 10.005 10.01 10.015 10.02
1000 1000
®, 500 w, 500

0 0
1.99  1.995 2 2.005 2.01 2015 202 9.99 9995 10 10.005 10.01 10.015 10.02
s Ls

Figure 12.3-6 Expanded view near 2 and 10s. Electrical and control transients subside
in approximately 10 ms.
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Figure 12.3-7 Torque versus speed trajectories for step changes in torque command.
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12.3.5 Reduced-Order Simulation

In the previous simulation, the motor’s electrical and current control system tran-
sients were included. However, the electrical transients are very short-lived, sug-
gesting that they can be neglected. A reduced-order simulation block diagram with
electrical and control transients neglected is shown in Fig. 12.3-8.

The previous study was repeated, and the resulting response is shown in
Fig. 12.3-9. Clearly, Figs. 12.3-5 and 12.3-9 appear identical with relatively small
differences in the numerical values of the variables at the indicated instants
of time.

12.4 Torque Control of a Synchronous Reluctance
Machine

There is another machine that is a sister to the permanent-magnet ac machine
and warrants some consideration. If we let A}, = 0, the permanent-magnet ac
machine becomes a synchronous reluctance machine [6, 7]. In such a machine,
the rotor is constructed so that the amount of magnetic steel along the q and
d axes differ as much as possible, while maintaining structural integrity. This
results in a large difference between the values of L; and Lq. In the literature,
Ly/L, ratios between 5 and 9 have been reported [6]. In the following studies, L, is
set to 3.3 mH, which is equal to the value of L, in the permanent-magnet machine
considered in the previous sections, and L, = ? = 0.66 mH. All other parameters

are assumed to be the same: P = 8§, \/5 I max = 222 A, \/5 Vi max = 2309V,
and r, = 0.09 Q. These parameters would be representative of a machine with
the same stator as the permanent-magnet machine considered previously, with
the permanent magnet in the rotor removed and additional magnetic steel cut
out of the rotor to increase the reluctance and decrease the inductance along
the d axis. Finally, the d and g subscripts are assumed to be interchanged
in this section to make L;>L,. The last step is arbitrary and not necessary;
however, in legacy motors and generators with salient rotors, L; is typically

larger than L.
In a synchronous reluctance machine, the torque equation becomes
3 P
T.= (E) (5) (Lg = Lg) gl (12.4-1)

There is an infinite number of values for Iy and I’ that give the same value of
T, as shown in Fig. 12.4-1 for T, values of 100, 200, 300, and 400 N - m. The plots in
Fig. 12.4-1 are independent of rotor speed and positive and negative torque form
a mirror image. In the reluctance machine, the shape of a constant-T, contour is
a hyperbola.

339



340

12 Torque Control of Permanent-Magnet and Synchronous Reluctance Machines

300

200

100

-100

-200

=300

1 1 T 1 1
=300 -200 -100 0 100 200 300

Figure 12.4-1 Contour plots for various values of torque, T,.

It is readily shown analytically that for a given value of T,, Iy; should be

set equal to I’ in order to minimize I, = 1/ (Igs)2 + (I{;S)2 (left as a homework

exercise for the reader). The optimal currents are plotted in Fig. 12.4-2 as a
function of torque, assuming there is no voltage constraint that would limit the
currents.

When a voltage constraint is involved, however, the situation is analytically
more complicated and a numerical procedure to establish the maximum and min-
imum torque and the optimal currents is warranted. Fortunately, the procedure
previously used to establish these for a permanent-magnet machine may also be
used for the reluctance machine with only minor modifications. The current and
voltage limits given by (12.2-2) and (12.2-3) are the same for the synchronous
reluctance machine. However, the steady-state voltage (constraint) equations are
now
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Figure 12.4-2 Optimal currents versus torque without voltage constraint.

Vi =rdh + oLyl (12.4-2)
Vi =1l — oL (12.4-3)

which is the same as in the permanent-magnet machine less the w,4,, term.
Repeating the procedure used for the permanent-magnet machine, the maxi-
mum and minimum torque are plotted as a function of electrical rotor speed
in Fig. 12.4-3, which can be compared to Fig. 12.2-4. The currents and voltages
needed to produce maximum torque are shown in Figs. 12.4-4 and 12.4-5,
respectively.

The maximum mechanical power and the efficiency at maximum power
are plotted as a function of electrical rotor speed in Figs. 12.4-6 and 12.4-7,
respectively. These can be compared with Figs. 12.2-7 and 12.2-8 for the
permanent-magnet machine. The general shape of the maximum torque and
maximum power versus speed plots is very similar; only the numerical val-
ues differ. Interestingly, maximum torque is comparable, and the maximum
power is somewhat larger in the synchronous reluctance machine than in the
permanent-magnet machine with the same voltage and current constraints. How-
ever, the maximum power decreases more rapidly as the rotor speed increases
with a value of 22.9 kW at 2000 rad/s. The maximum efficiency is also somewhat
lower.
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In the preceding figures, it is assumed that the motor is operating at maximum
or minimum torque. Typically, however, the desired torque will lie somewhere
between these values. To minimize stator winding losses, it is desired to select Ig;‘
and I'; that produces the desired torque T; with minimum peak stator current.
As in the permanent-magnet machine, I g;‘ and I;: will, in general, be functions of
both T; and w, for the same reasons. Moreover, the same procedure used to gen-
erate I (T;, w,) and I’} (T;, w,) for the permanent-magnet machine can be used
for the synchronous reluctance machine. The results are shown in Figs. 12.4-8 and
12.4-9. Interestingly, the general shapes of the optimal I7¥ (T, ®,) and I'; (T;, @, )
plots for the reluctance machine are, respectively, similar to Ig: (T:,w,) and
Igs (T#,,) for the permanent-magnet machine. The reader is reminded that the
q and d subscripts were interchanged by choice earlier in this section. The data
used to generate Figs. 12.4-8 and 12.4-9 can be stored in lookup tables as part of a
torque control system.

The method of torque control described for the permanent-magnet machine
can also be used for the synchronous reluctance machine. Figures 12.3-1-12.3-4
and 12.3-8 may be applied to the synchronous reluctance machine simply by
setting )7 to zero in Figs. 12.3-2 and 12.3-3 and updating the lookup tables in
Figs. 12.3-1, 12.3-4, and 12.3-8 to correspond to the data plotted in Figs. 12.4-8
and 12.4-9. These modifications are so minor that these figures will not be
repeated here.

Figure 12.4-9 Plot of I”? (w,, T}).

r'e
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Figure 12.4-10 Torque command stepped from 6.57 to 400 N-m at t = 2 s, then to

—400att=10s.

20

The simulation studies portrayed in Figs. 12.3-5 and 12.3-8 were repeated for
the synchronous reluctance machine. The results are shown in Figs. 12.4-10
(full-order model) and 12.4-11 (reduced-order model with electric and control
transients neglected). The responses are very similar in appearance to those
shown in Figs. 12.3-5 and 12.3-9; only the numerical values are different. As in
the permanent-magnet machine, the electric machine and control transients
are short-lived and do not significantly affect the longer-term mechanical

response.
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Same as Fig. 12.4-10 with the electric machine and control transients

neglected.
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Problems

12.1 Consider Fig. 12.2-3. Assume it is desired to produce 400 N - m of torque at
w, = 2000 rad/s. Calculate Vg  and V) _to achieve this goal.

12.2  For the Ij; and Ij values given in Fig. 12.2-5 that maximize torque at
o, = 360. 7 rad/s, establlsh Vs Vi and V. Verify V <V .

12.3 Repeat Problem 2 for w, = 541.1 rad/s.

12.4 Develop a MATLAB or Python script that generates (similar to Figs. 12.2-5
and 12.2-6) plots of I, Iy, I, Vi, Vi, and V that minimizes (maximizes
negative) torque for the machine parameters given in Section 12.2.

12.5 Derive (12.3-5) and (12.3-6). Hint: start with vi, = il + @, (4, + Ly '; ) +

N qs
ir ro— ir ;r r
Lopigeand v =ri — w,Ljig, + Lypi, and assume Vgs = Vg, Vi = Vi

12.6 In a reluctance machine, T, = Kigi’, . Show analytically that to minimize

Va2I, = V(L) + (I ) for a given value of T, the g- and d-axis compo-

nents of the stator currents should be equal, iz, = i, .

12.7 For the permanent-magnet machine considered in Section 12.2, the
desired torque is 100 N-m. Using MATLAB’s fmincon or Python’s
scipy.optimize.minimize, establish Ij; and I’ that gives the desired torque


https://www.mathworks.com/help/optim/ug/fmincon.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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while minimizing v/2I, = (Igs)2 + (I;S)Z. Then, determine the corre-
sponding Vg, and V. Assume there are no voltage or current constraints.
Sketch the phasor diagram (see Fig. 12.2-9).

12.8 For the operating condition in Problem 2, calculate the electric power in,
the mechanical power out, and the efficiency.

12.9 Repeat Problems 4 and 7 for the synchronous reluctance machine
described in Section 12.4.






13

Induction Motor Drives

13.1 Introduction

The objective of this chapter is to explore the use of induction machines in
variable-speed drive systems. Several strategies will be considered herein.
The first, volts-per-hertz control, is designed to accommodate variable-speed
commands by using the inverter to apply a voltage of correct magnitude and
frequency so as to approximately achieve the commanded speed without the use
of speed feedback. The second strategy is constant slip control. In this control,
the drive system is designed so as to accept a torque command input—and
therefore speed control requires and additional feedback loop. Although this
strategy requires the use of a speed sensor, it has been shown to be highly robust
with respect to changes in machine parameters and results in high efficiency of
both the machine and inverter. One of the disadvantages of this strategy is that
in closed-loop speed-control situations, the response can be somewhat sluggish.
Another strategy considered is field-oriented control. In this method, nearly
instantaneous control of torque can be obtained. A disadvantage of this strategy
is that in its direct form, the sensor requirements are significant, and in its
indirect form, it is sensitive to parameter measurements unless online parameter
estimation or other steps are taken. Another method of controlling torque, called
direct torque control (DTC), is also described, and its performance illustrated
by computer traces. Finally, slip energy recovery systems, such as those used in
modern variable-speed wind turbines, are described.

13.2 Volts-Per-Hertz Control

Perhaps the simplest and least expensive induction motor drive strategy is constant
volt-per-hertz control. This is a speed control strategy that is based on two obser-
vations. The first of these is that the torque speed characteristic of an induction
Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
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machine is normally quite steep in the neighborhood of synchronous speed, and
so the electrical rotor speed will be near to the electrical frequency. Thus, by con-
trolling the frequency, one can approximately control the speed. The second obser-
vation is based on the a-phase voltage equation, which may be expressed

Vas = Fylgs + DAgs (13.2-1)

For steady-state conditions at mid- to high speeds wherein the flux linkage term
dominates the resistive term in the voltage equation, the magnitude of the applied
voltage is related to the magnitude of the stator flux linkage by

V, = w,A, (13.2-2)

which suggests that in order to maintain constant flux linkage (to avoid satura-
tion), the stator voltage magnitude should be proportional to frequency.

Figure 13.2-1 illustrates one possible implementation of a constant volts-per-
hertz drive. Therein, the speed command, denoted by w},,, acts as input to a slew
rate limiter (SRL), which acts to reduce transients by limiting the rate of change
of the speed command to values between a;, and «a,,. The output of the SRL is
multiplied by P/2, where P is the number of poles in order to arrive at the elec-
trical rotor speed command @} to which the radian electrical frequency w, is set.
The electrical frequency is then multiplied by the volts-per-hertz ratio V,/w,,
where V) is rated voltage, and w, is rated radian frequency in order to form an
rms voltage command V. The rms voltage command V is then multiplied by \/5
in order to obtain a g-axis voltage command v, (the voltage is arbitrarily placed
in the g-axis). The d-axis voltage command is set to zero. In a parallel path, the
electrical frequency w, is integrated to determine the position of a synchronous
reference frame 6,. The integration to determine 6, is periodically reset by an
integer multiple of 2z in order to keep 0, bounded. Together, the g- and d-axis
voltage commands may then be passed to any one of a number of modulation
strategies in order to achieve the commanded voltage as discussed in Chapter 10.
The advantages of this control are that it is simple, and that it is relatively
inexpensive by virtue of being entirely open loop; speed can be controlled (at least

/_ Pmax
0, = of V V "
0k, — SRL - : b - \/E —> V(qs
0 —> v

){ S S
Reset > O

™ | o

Wp

min

Figure 13.2-1 Elementary volts-per-hertz drive.
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to a degree) without feedback. The principal drawback of this type of control is
that because it is open loop, some measure of error will occur, particularly at low
speeds.

Figure 13.2-2 illustrates the steady-state performance of the voltage-per-hertz
drive strategy shown in Figure 13.2-1. In this study, the machine is a 50-hp,
four-pole, 1800-rpm, 460-V (line-to-line, rms) with the following parameters:
ry=72.5mQ, L, =1.32mH, L,, =30.1 mH, L;r =1.32mH, . = 41.3 mQ, and the
load torque is assumed to be of the form

2
T, = T, | 0.1S(w,,,) + 0.9(%> (13.2-3)
Wy,

where S(w,,,) is a stiction function that varies from 0 to 1 as @,,,, goes from 0 to 0*.
Figure 13.2-2 illustrates the percent error in speed 100 (},,, — @,,,) /®},, normal-
ized voltage V/V;, normalized current I /I, efficiency #, and normalized air-gap
flux linkage 4,,/4, versus normalized speed command w},, /w,,,. The base for the

air-gap flux linkage is taken to be the no-load air-gap flux linkage that is obtained
at rated speed and rated voltage.

1.2 T

\

II'\.
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g \
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\ Wepr
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Figure 13.2-2 Performance of elementary volts-per-hertz drive.
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As can be seen, the voltage increases linearly with speed command, while the
rms current remains approximately constant until about 0.5 pu and then rises to
approximately 1.2 pu at a speed command of 1 pu. Also, it is evident that the
percent speed error remains less than 1% for speeds from 0.1 to 1 pu; however,
the speed error becomes quite large for speeds less than 0.1 pu. The reason for
this is the fact that the magnetizing flux drops to zero as the speed command goes
to zero due to the fact that the resistive term dominates the flux-linkage term in
(13.2-1) at low speeds. As a result, the torque-speed curve loses its steepness about
synchronous speed, resulting in larger percentage error between commanded and
actual speed.

The low-speed performance of the drive can be improved by increasing the volt-
age command at low frequencies in such a way as to make up for the resistive drop.
One method of doing this is based on the observation that the open-loop speed reg-
ulation becomes poorer at low speeds, because the torque-speed curve becomes
decreasingly steep as the frequency is lowered if the voltage is varied in accor-
dance with (13.2-2). To prevent this, it is possible to vary the rms voltage in such a
way that the slope of the torque-speed curve at synchronous speed becomes inde-
pendent of the electrical frequency. Taking the derivative of torque with respect
to rotor speed in (3.8-20) about synchronous speed for an arbitrary electrical fre-
quency and setting it equal to the same derivative about base electrical frequency
yields

2 212
re .+ ;L

Vo= Vi | o (13.2-4)
rs,est + wass,es[

where ry,, and L, are the estimated value of r; and L, respectively. The block
diagram of this version of volts-per-hertz control is identical to that shown in
Figure 13.2-1, with the exception that (13.2-4) replaces (13.2-2). Several obser-
vations are in order. First, it can be readily shown that varying the voltage in
accordance with (13.2-4) will yield the same air-gap flux at zero frequency as is
seen for no load conditions at rated frequency—thus the air-gap flux does not fall
to zero at low frequency as it does when (13.2-2) is used. It is also interesting to
observe that (13.2-4) reduces to (13.2-2) at a frequency such that @, L ., > r; ..

In order to further increase the performance of the drive, one possibility is to
utilize the addition of current feedback in determining the electrical frequency
command. Although this requires at least one (but more typically two) current
sensor(s) that will increase cost, it is often the case that a current sensor(s) will
be utilized in any case for overcurrent protection of the drive. In order to derive
an expression for the correct feedback, first note that near synchronous speed, the

electromagnetic torque may be approximated as

T, =K, (0, — ®,) (13.2-5)
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where
K o7, (13.2-6)
v awr w,:we .
1f (13.2-4) is used
P
3(8) 13z
K, =—+ (13.2-7)

(i +wlLy)
regardless of synchronous speed. Next, note that from (3.5-9), torque may be

expressed as

3P e, ,
T, = 55 (Adgs = Agsigs) (13.2-8)

From (3.4-18) and (3.4-19), for steady-state conditions, the stator flux linkage
equations may be expressed as

Ve —r.ié
Xy = ——F (13.2-9)
we
and
Ve —r.it
A=t (13.2-10)
,

e
Approximating vg, by its commanded value of v and v% by its commanded value
of zero in (13.2-9) and (13.2-10) and substitution of the results into (13.2-8) yields

3P 1 . )
T, = o (vesies — 2rI7) (13.2-11)
where
— 1 e2 se2
Iy = —\/igs + 1% (13.2-12)

V2

Equating (13.2-7) and (13.2-11) and solving for w, yields

gs‘qs
w, = 5 (13.2-13)

In practice, (13.2-13) is implemented as

w; +\Joi + 3P (visis, — 2, 2) /K,

ol + \/max (0, @} + X,orr)

w, = 5 (13.2-14)
where

Xcorr = HLPF(S)}(corr (13.2-15)
and where

Xeorr = 3P (Vipies — 2r,I7) /K, (13.2-16)
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Figure 13.2-3 Compensated volts-per-hertz drive.

1.2

Figure 13.2-4 Performance of compensated volts-per-hertz drive.
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In (13.2-15), H; px(s) represents the transfer function of a low-pass filter, which
is required for stability and to remove noise from the measured variables.
This filter is often simply a first-order lag filter. The resulting control is depicted
in Figure 13.2-3.

Figure 13.2-4 illustrates the steady-state performance of the compensated
voltage-per-hertz drive for the same operating conditions as those of the study
depicted in Figure 13.2-2. Although in many ways the characteristic shown
in Figure 13.2-4 are similar to those of Figure 13.2-2, there are two important
differences. First, the air-gap flux does not go to zero at low speed commands.
Second, the speed error is dramatically reduced over the entire operating range
of drive. In fact, the speed error using this strategy is less than 0.1% for speed
commands ranging from 0.1 to 1.0 pu—without the use of a speed sensor.
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Figure 13.2-5 Start-up performance of compensated volts-per-hertz drive.
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In practice, Figure 13.2-4 is over optimistic for two reasons. First, the presence
of a large amount of stiction can result in reduced low-speed performance
(the machine will simply stall at some point). Second, it is assumed in the
development that the desired voltage is applied. At extremely low commanded
voltages, semiconductor voltage drops, and the effects of dead time can become
important and result in reduced control fidelity. In this case, it is possible to use
either closed loop (such as discussed in Section 13.11) or open-loop compensation
techniques to help ensure that the desired voltages are actually obtained.

Figure 13.2-5 illustrates the start-up performance of the drive for the same
conditions as Figure 13.2-2. In this study, the total mechanical inertia is taken
to be 8.2 N m s2, and the low-pass filter used to calculate X,,,, was taken to be a
first-order lag filter with a 0.1-second time constant. The acceleration limit, a,,,,
was set to 75.4 rad/s?. Variables depicted in Figure 13.2-5 include the mechanical
rotor speed w,,,, the electromagnetic torque T, the peak magnitude of the air-gap

flux linkage 4,, = 4/ /13,,, + /lim, and finally the a-phase current i, . Initially, the
drive is completely off; approximately 0.6 second into the study, the mechanical
rotor speed command is stepped from 0 to 188.5 rad/s. As can be seen, the drive
comes to speed in roughly 3 seconds, and the build up in speed is essentially
linear (following the output of the slew rate limit). The air-gap flux takes some
time to reach rated value; however, after approximately 0.5 second, it is close to
its steady state value. The a-phase current is very well behaved during start-up,
with the exception of an initial (negative) peak—this was largely the result of the
initial dc offset. Although the drive could be brought to rated speed more quickly
by increasing the slew rate, this would have required a larger starting current and
therefore a larger and more costly inverter. There are several other compensations
techniques set forth in the literature [1, 2].

13.3 Constant Slip Current Control

Although the three-phase bridge inverter is fundamentally a voltage source
device, by suitable choice of modulation strategy (such as be hysteresis or delta
modulation), it is possible to achieve current source based operation. One of the
primary disadvantages of this approach is that it requires phase current feedback
(and its associated expense); however, at the same time, this offers the advantage
that the current is readily limited, making the drive extremely robust, and, as a
result, enabling the use of less conservatism when choosing the current ratings of
the inverter semiconductors.

One of the simplest strategies for current control operation is to utilize a
fixed-slip frequency, defined as

w0, =0, — 0, (13.3-1)
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By appropriate choice of the radian slip frequency, w,, several interesting opti-
mizations of the machine performance can be obtained, including achieving the
optimal torque for a given value of stator current (maximum torque per amp), as
well as the maximum efficiency [3, 4].
In order to explore these possibilities, it is convenient to express the electromag-
netic torque as given by (3.8-17) in terms of slip frequency, which yields
3 (’-2’) L2, 2!
T,=———— (13.3-2)
(r;) + (a)sL’,r)
From (13.3-2), it is apparent that in order to achieve a desired torque T utilizing
a slip frequency w,, the rms value of the fundamental component of the stator
current should be set in accordance with

” 2
2 |T€ | <r/iz‘,est + (wSL:’r,est) )
I = (13.3-3)
3Plwg|L?, ¥

‘Ms,est” rr,est

In (13.3-3), the parameter subscripts in (13.3-2) have been augmented with “est”
in order to indicate that this relationship will be used in a control system in which
the parameter values reflect estimates of the actual values.

As alluded to previously, the development here points toward control in which
the slip frequency is held constant at a set value w; ... However, before deriving the
value of slip frequency to be used, it is important to establish when it is reasonable
to use a constant slip frequency. The fundamental limitation that arises in this
regard is magnetic saturation. In order to avoid overly saturating the machine,
alimit must be placed on the flux linkages. A convenient method of accomplishing
this is to limit the rotor flux linkage. From the steady-state equivalent circuit, the
a-phase rotor flux linkage may be expressed as

A, =L,T, + Ly <7m + Z;,) (13.3-4)
From the steady state equivalent circuit it is also clear that
T 5 jweLMs
I =-1 ——*= 13.3-5
T oLy, + /s (1333
Substitution of (13.3-5) into (13.3-4) yields
/
Ay =T Ly ——r— 13.3-6
ar as MsjwsL;r + I"; ( )
Taking the magnitude of both sides of (13.3-6) yields
r/
A, =LLy, z (13.3-7)

2712 2
\/w;L' + 15

359



360

13 Induction Motor Drives

where A, and I are the rms value of the fundamental component of the referred
a-phase rotor flux linkage and a-phase stator current, respectively. Combining
(13.3-7) with (13.3-2) yields

P w A2
T,=3=—+ 13.3-8
A 4 ( )
Now, if a constant slip frequency w;,, is used, and the rotor flux is limited to
Ar.max> then the maximum torque that can be achieved in such an operating mode,

denoted T is

e,thresh?

2
T _ 3P ws,selﬂr,max
e,thresh — 5 !
r.est

(13.3-9)

From (13.3-8), for torque commands in which |T}| > T, .- the slip must be
varied in accordance with
ZTZ r;,est

“s = 3ppe

r,max

(13.3-10)

Figure 13.3-1 illustrates the combination of the ideas into a coherent control algo-
rithm. As can be seen, based on the magnitude of the torque command, the mag-
nitude of the slip frequency w,; is either set equal to the set point value o, or to
the value arrived at from (13.3-10), and the result is given the sign of T. The slip
frequency w, and torque command T are together used to calculate the rms mag-
nitude of the fundamental component of the applied current I, which is scaled
by \/5 in order to arrive at a g-axis current command igg. The d-axis current com-
mand if;; is set to zero. Of course, the placement of the current command into the
g-axis was completely arbitrary; it could have just as well been put in the d-axis or
any combination of the two provided the proper magnitude is obtained. In addi-
tion to being used to determine I, the slip frequency w, is added to the electrical
rotor speed w, in order to arrive at the electrical frequency w,, which is in turn
integrated in order to yield the position of the synchronous reference frame 0,.

(13.3-3) = i

‘ \:
ot
L 2T e |T241> T hresi 0 ——=>1
3PA s o]
5 5 wS
@s,set ITH1< T, shresi
Ne
, 3 It
+ Reset

Figure 13.3-1 Constant slip frequency drive.
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There are a variety of ways to achieve the commanded g- and d-axis currents as dis-
cussed in Chapter 10. Finally, it should also be observed that the control depicted in
Figure 13.3-1 is a torque rather than speed control system; speed control is readily
achieved through a separate control loop in which the output is a torque command.
Using this approach, it is important that the speed control loop is set to be slow
relative to the torque controller, which can be shown to have a dynamic response
on the order of the rotor time constant.

One remaining question is the selection of the slip frequency set point ;.
Herein, two methods of selection are considered; the first will maximize torque
for a given stator current and the second will maximize the machine efficiency. In
order to maximize torque for a given stator current, note that by setting w; = o,
in (13.3-1), torque is maximized for a given stator current by maximizing the ratio

Te 3 <§> s,setLJZWSr;/'

e e——— (13.3-11)

IS ( r; ) + (a)s,setL; )
Setting the derivative of the right-hand side of (13.3-11) with respect to @
to zero and solving for oy, yields the value of @
for a given stator current. This yields

s,set equal

s.ser» Which maximizes the torque

/
r.est
s.set — 1y

’ L rr.est

r

w (13.3-12)

In order to obtain an expression for slip frequency that will yield maximum effi-
ciency, it is convenient to begin with an expression for the input power of the
machine. With I, = I, the input power may be expressed as

P, =3I Re(V,) (13.3-13)

Using the induction motor equivalent circuit model, it is possible to expand
(13.3-13) to

3w, L2, o,

Py, =3r[} + ————— (13.3-14)
'y + (wL),)
Comparison of (13.3-14) to (13.3-2) yields
P, =3rI}+ %weTe (13.3-15)
Noting that w, = 0, + ®,, and that
P, = I%ere (13.3-16)

(13.3-15) may be expressed as

Py =Py = 3rsIs2 + %Tews (13.3-17)
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Substitution of (13.3-2) into (13.3-17) yields an expression for the power losses in
terms of torque and slip frequency; in particular

r'r w.r.L?
P = ETe ==+ w, (13.3-18)
P wlly, Ly

Setting T, = T, and o, = @y, in (13.3-18), then minimizing the right-hand side
with respect to w;,, yields a slip frequency set point of

O et = 77 (13.3-19)
Ms,est . s,est

2 /
L rr.est rr,esl

+1
Assuming that Ly, ~ L}, ., and that r,,, ~ r] , it is apparent that the slip fre-
quency for maximum efficiency is lower than the slip frequency for maximum
torque per amp by a factor of roughly 1/ \/5

The steady-state performance of a constant slip control drive is depicted in
Figure 13.3-2, wherein oy, is determined using (13.3-12), and Figure 13.3-3,
wherein o, is determined using (13.3-13). In these studies, the parameters are
those of the 50-hp induction motor discussed in Section 13.2, the maximum rotor

1.2

0.8

0.6

0.4

0.2

Figure 13.3-2 Performance of constant slip frequency drive (maximum torque-per-amp).
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1.2

Figure 13.3-3 Performance of constant slip frequency drive (maximum efficiency).

flux allowed is set to be the value obtained for no-load operation at rated speed
and rated voltage, and the estimated values of the parameters are assumed to
be correct. It is assumed that the speed in this study is equal to the commanded
speed (the assumption being the drive is used in the context of a closed-loop
speed control since rotor position feedback is present). As can be seen, this drive
results in appreciably lower losses for low-speed operation than in the case of
the volts-per-hertz drives discussed in the previous section. Because core losses
are not included in Figure 13.3-2 and Figure 13.3-3, the fact that these strategies
utilize reduced flux levels will further accentuate the difference between constant
slip and volts-per-hertz controls. In comparing Figure 13.3-2 with Figure 13.3-3,
it is interesting to observe that setting the slip frequency to achieve maximum
torque per amp performance yields nearly the same efficiency as setting the
slip frequency to minimize losses. Since inverter losses go up with current, this
suggest that setting the slip to optimize torque per amp may yield higher overall
efficiency than setting the slip to minimize machine losses—particularly in view
of the fact that the lower flux level in maximum torque per amp control will
reduce core losses relative to maximum efficiency control.

Another question that arises in regard to the control is the effect errors in the
estimated value of the machine parameters will have on the effectiveness of the
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control. As it turns out, this algorithm is very robust with respect to parameter esti-
mation, as the optimums being sought (maximum torque per amp or maximum
efficiency) are broad. An extended discussion of this is set forth in References 3
and 4.

The use of the constant slip control in the context of a speed control system is
depicted in Figure 13.3-4. Initially, the system is at zero speed. Approximately 2
seconds into the study, the speed command is stepped to 188.5 rad/s. In this study,
the machine and load are identical to those in the study shown in Figure 13.2-4.
However, since the constant-slip control is a torque input control, a speed con-
trol is necessary for speed regulation. For the study shown in Figure 13.3-4, the
torque command is calculated in accordance with the speed control shown in
Figure 13.3-5. This is a relatively simple PI control with a limited output, and anti-
windup integration that prevents the integrator from integrating the positive (neg-
ative) speed error whenever the maximum (minimum) torque limit is invoked.

100

i A

as’

-100 -
1.50

3 second

<—

A,LVs -

m

500

oy N—“——

e"'m

=500 -
200 7

®,,, rad/s -

rm»

0

Figure 13.3-4 Start-up performance of constant slip controlled drive.
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Figure 13.3-5 Speed control.

For the purposes of this study, the maximum and minimum torque commands
were taken to 218 N - m (1.1 pu) and 0 N - m, respectively while K, and z,, were
selected to be 1.64 N - m s/rad and 2 seconds, respectively. It can be shown that if
T, = T;, and if the machine were unloaded, this would result in a transfer function
between the actual and commanded speeds with two critically damped poles with
1-second time constants. Also used in conjunction with the control system was a
synchronous current regulator in order to precisely achieve the current command
output of the constant slip control. To this end, the synchronous current regulator
depicted in Figure 10.11-1 was used. The time constant of the regulator was set to
16.7 ms.

As can be seen, the start-up performance using the constant slip control is much
slower than using the constant volts-per-hertz control; this is largely because of the
fact that the speed control needed to be fairly slow in order to accommodate the
sluggish torque response. However, one point of interest is that the stator current,
by virtue of the tight current regulation, is very well behaved; in fact, the peak
value is only slightly above the steady-state value.

13.4 Field-Oriented Control

In many motor drive systems, it is desirable to make the drive act as a torque trans-
ducer wherein the electromagnetic torque can nearly instantaneously be made
equal to a torque command. In such a system, speed or position control is dramat-
ically simplified because the electrical dynamics of the drive become irrelevant to
the speed or position control problem. In the case of induction motor drives, such
performance can be achieved using a class of algorithms collectively known as
field-oriented control. There are a number of permutations of this control—stator
flux oriented, rotor flux oriented, and air-gap flux oriented, and of these types
there are direct and indirect methods of implementation. This text will consider
the most prevalent types, which are direct rotor flux-oriented control and indirect
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current Figure 13.4-1 Torque on a current

> vector loop.
—_—> r 0
B
—>

= N

rotor flux-oriented control. For discussions of the other types, the reader is referred
to texts entirely devoted to field-oriented control such as References 5 and 6.

The basic premise of field-oriented control may be understood by considering
the current loop in a uniform flux field shown in Figure 13.4-1. From the Lorentz
force equation, it is readily shown that the torque acting on the current loop is
given by

T, = —2BiNLrsin 0 (13.4-1)

where B is the flux density, i is the current, N is the number of turns, L is the length
of the coil into the page, and r is the radius of the coil. Clearly, the magnitude of
the torque is maximized when the current vector (defined perpendicular to the sur-
face of the winding forming the current loop and in the same direction as the flux
produced by that loop) is orthogonal to the flux field. The same conclusion is read-
ily applied to an induction machine. Consider Figure 13.4-2. Therein, qd-axis rotor
T .
current and flux linkage vectors zq = [lq, dr] and /1 [/1{1, A:ir] , respectively,
are shown at some instant of time. Repeating (3.5- 8)

T, = (A;, = Ayder) (13.4-2)

which may be expressed as

A/

T =_ qdr

¢ 22
which is analogous to (13.4-1). Again, for a given magnitude of flux linkage, torque
is maximized when the flux linkage and current vectors are perpendicular.

sin (13.4-3)

qdr

5 s Figure 13.4-2 Torque production in an induction
tqdr qdr motor.

q-axis

d-axis
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Thus, it is desirable to keep the rotor flux linkage vector perpendicular to the
rotor current vector. As it turns out, this is readily accomplished in practice. In
particular, in the steady state, the rotor flux linkage vector and rotor current vec-
tor are always perpendicular for all singly fed induction machines. To see this,
consider the rotor voltage equations (3.3-15) and (3.3-16). With the rotor circuits
short-circuited and using the synchronous reference frame, it can be shown that
the rotor currents may be expressed as

;e

1
=~ 0, — 0, (13.4-4)

r
. 1
i@, = F(a)e - a),)/lgr (13.4-5)
r
The dot product of the rotor flux linkage and rotor current vectors may be
expressed as

re 1€ 1€ .re 1€ .1e
j’qdr . lqdr = ﬁquqr + Adrldr (13.4'6)

Substitution of (13.4-4) and (13.4-5) into (13.4-6) reveals that this dot product is
zero whereupon it may be concluded that the rotor flux and rotor current vectors,
as expressed in the synchronous reference frame, are perpendicular. Furthermore,
if they are perpendicular in the synchronous reference frame, they are perpendic-
ular in every reference frame. In this sense, in the steady state, every singly excited
induction machine operates with an optimal relative orientation of the rotor flux
and rotor current vectors. However, the defining characteristic of a field-oriented
drive is that this characteristic is maintained during transient conditions as well.
It is this feature that results in the high transient performance capabilities of this
class of drive.

In both direct and indirect field oriented drives, the method to achieve the con-
dition that the rotor flux and rotor current vectors are always perpendicular is
twofold. The first part of the strategy is to ensure that

A =0 (13.4-7)
and the second to is to ensure that
i, =0 (13.4-8)

Clearly, if (13.4-7) and (13.4-8) hold during transient conditions, then by (13.4-6),
the rotor flux linkage and rotor current vectors are perpendicular during those
same conditions. By suitable choice of 6, on an instantaneous basis, (13.4-7) can
always be satisfied by choosing the position of the synchronous reference frame
to put all of the rotor flux linkage in the d-axis. Satisfying (13.4-8) can be accom-
plished by forcing the d-axis stator current to remain constant. To see this, consider
the d-axis rotor voltage equation (with zero rotor voltage):

0 = r/ily, + (0, — @) Ay, + DAy, (13.4-9)
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By suitable choice of reference frame, (13.4-7) is achieved; therefore A’ Zr can be set
to zero in (13.4-9) to yield

0=rli'y +pA (13.4-10)

Next, substitution of the d-axis rotor flux linkage equation (3.4-33) into (13.4-10)
and rearranging yields

/

.7€ r 7€ LM .
pi'y, = _L_/’l’d, - L/szgs (13.4-11)
rr rr

Equation (13.4-11) can be viewed as a stable first-order differential equation in i},
with pij as input. Therefore, if i{,_is held constant, then i'7 will go to, and stay at,
zero, regardless of other transients which may be taking place.

Before proceeding further, it is motivational to explore some of the other impli-
cations of (13.4-7) and (13.4-8) being met. First, combining (13.4-8) with (3.4-30)
and (3.4-33), respectively, it is clear that

Ags = Lgslyg (13.4-12)
and that
g = Ly, (13.4-13)

Clearly, the d-axis flux levels are set solely by the d-axis stator current. Combin-
ing (13.4-2) with (13.4-7), it can be seen that torque may be expressed

3P e.
T,=- 33 ﬂ’j,z’qer (13.4-14)
Furthermore, from (13.4-7) and (3.4-32), it can be shown that
’Zr =— L,SIZS (13.4-15)
rr
Combining (13.4-14) and (13.4-15)
L
T, = 3P2s e e (13.4-16)

e 22 L;r drtgs
Together, (13.4-13) and (13.4-16) suggest the “generic” rotor flux-oriented con-
trol depicted in Figure 13.4-3. Therein, variables of the form X", X, and X denote
commanded, measured, and estimated, respectively; in the case of parameters,
an addition of a “,est” to the subscript indicates the assumed value. As can be
seen, a dc source supplies an inverter driving an induction machine. Based on
a torque command T, the assumed values of the parameters, and the estimated
value of the d-axis rotor flux /Tg—’r*, (13.4-16) is used to formulate a g-axis stator cur-
rent command ig;. The d-axis stator current command i is calculated such as to

achieve a rotor flux command (which is typically maintained constant or varied

only slowly) /l’der* based on (13.4-13). The g- and d-axis stator current command
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Figure 13.4-3 Generic
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is then achieved using any one of a number of current-source current controls
as discussed in Section 10.11. However, this diagram of the rotor flux-oriented
field-oriented control is incomplete in two important details—the determination
of )T:f:’ and the determination of 6,. The difference in direct and indirect field ori-
ented control is in how these two variables are established.

13.5 Direct Field-Oriented Control

In direct field-oriented control, the position of the synchronous reference is
based on the value of the g- and d-axis flux linkages in the rotor reference frame.
From (2.5-7), upon setting the position of the stationary reference frame to be
zero, we have that

re o ’s
[/1qr] _ [cos 0, smé’e] [A qr] (13.5-1)

re s 18
Ay sin@, cosf, | |4y,

In order to achieve /1';, =0, from (13.5-1), it is sufficient to define the position of
the synchronous reference frame in accordance with

6, = angle (1", —jA'y,) + % (13.5-2)
whereupon it can be shown that
2 2

A=\ (X5)" + (45,) (13.5-3)

The difficulty in this approach is that i’fzr and 4’3, are not directly measurable
quantities. However, they can be estimated using direct measurement of the
air-gap flux. In this method, hall-effect sensors (or some other means) are
placed in the air gap and used to measure the air-gap flux in the g- and d-axis
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of the stationary reference frame (since the position of the sensors is fixed in a
stationary reference frame). The net effect is that 47, and 4% may be regarded as
measurable. In order to establish A’ ;r and A’ ilr from Agm and Azm, note that

Hom = Ly (B + 1) (13.5-4)
Therefore,
NS — Ly
i = Zam Mg (13.5-5)
LM

Recall that the g-axis rotor flux linkages may be expressed as
X = Lyl + Ly (B + 13, (13.5-6)

Substitution of (13.5-5) into (13.5-6) yields
!
Vo= L_;; Agm = Liyigs (13.5-7)
Performing an identical derivation for the d-axis yields
L/
s _ T !
A ar = L—Mj.fim — Llrltsis (135-8)
This suggests the rotor flux calculator shown in Figure 13.5-1, which calculates
both the position of the synchronous reference frame as well as the d-axis flux
linkage. This is based directly on (13.5-7), (13.5-8), (13.5-2), and (13.5-3), with the
addition of two low-pass filters in order to prevent switching frequency noise from
effecting the control (the time constant 7,;, must be set small enough that this
transfer function has no effect on the highest frequency fundamental component
that will be utilized) and that, as in Figure 13.4-1, a more careful distinction is

L'

2 s rrest

qgm L

'm,est

R _ 1 2
> ) qr - Py e
tys — Ligest z s+ 1 2 V@ + @ 24

) 1 N
iS[[S — L;r,ext T 1 angle(lf]rf.]/l?ir) + % —> 0,
— r_/bs + i (fr
—+
2 L;);est
/Ildm L

‘m,est

Figure 13.5-1 Rotor flux calculator.
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Figure 13.5-2 Direct field-oriented control.

made between measured and estimated values. Figure 13.5-2 depicts the incorpo-
ration of the rotor flux calculator into the direct field-oriented control. This will
be important in future analysis when the effects of using parameter values in the
control algorithms which are not equal to the actual parameters of the machine
(which are highly operating-point dependent).

13.6 Robust Direct Field-Oriented Control

One of the problems of the control strategy presented is that it is a function of the
parameters of the machine. Because of magnetic nonlinearities and the distributed
nature of the machine windings, particularly the rotor windings—the model is not
particularly accurate. The machine resistances and inductances are highly oper-
ating point dependent. In order to understand the potential sources of error, let
us first consider the rotor flux observer. From Figure 13.5-1, recall the rotor flux

vector is estimated as

’
~l€ er,est i) ;TS

qdr A qdm Llr,es[l qds (136'1)

LMs,est
Assuming that the measured flux and measured current are accurate, (13.6-1) is
relatively insensitive to parameter variation. To see this, let us first consider the
first term on the right-hand side of (13.6-1). The term is a function of L,,. .,/ Ly o:-
However, note that since the rotor leakage inductance is much less that the mag-
netizing inductance, this ratio will be close to unity regardless of the actual value
of the parameters. Hence, this term will not be a strong function of the parame-
ters of the machine. The second term in (13.6-1) is a strong function of the leakage

371



372

13 Induction Motor Drives

inductance. However, the second term as a whole is considerably smaller than the
first since the first term represents the air-gap flux and the second has a magni-
tude equal to the rotor leakage flux. Thus, as a whole, (13.6-1) and the rotor flux
estimator are relatively insensitive to the machine parameters.

Another key relationship used in the direct field-oriented control which is a
function of the parameters of the machine is the calculation of the g-axis current;
in particular

i = L (13.6-2)
é 1_3 LMs,est A EF
22 L dr

rr,est
Again, since the ratio of Ly, to L, is close to unity for the normal range of
parameters, this relationship is again relatively insensitive to parameters.
However, this is not the case for the calculation of the d-axis current, which is
calculated in accordance with
Ae*
e dr

o= 4 (13.6-3)
ds LMs,est

As can be seen, this relationship is highly sensitive to Ly ,,. An error in the d-axis
current command will result in an incorrect value of rotor flux linkages. Because
the rotor flux linkages can be estimated using the rotor flux estimator shown in
Figure 13.5-1, this error can be readily eliminated by introducing a rotor flux feed-
back loop shown in Figure 13.6-1. The basis of this loop is (13.6-3). However,
integral feedback is utilized to force the d-axis rotor flux linkage to be equal to
its commanded value. For the purposes of design of this feedback loop, it is conve-
nient to assume that /lfir = LMSiZ”S‘, and that ;1\(’; = /1’;r, whereupon it can be shown
that the transfer function between the actual and commanded flux linkages is
given by

A T,5+1
Yar _ _ TSHL (13.6-4)

/1’6* LMS est
dr 7 =S +1

'Ms
From the form of this transfer function, it can be seen that in the steady state,
the rotor flux will be equal to the commanded value. Furthermore, note that if

'6*
a Lds

d
g LM, est

2% 5(x)
+

+
1

Figure 13.6-1 Flux control loop.
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Lygs.est = Lgs» the transfer function between the commanded and actual rotor flux
is unity. The value of 7 is chosen so that that 7,27, Ly o /Ly > > 1; as a worst
case estimate, Ly ., = L) can be taken to be 0.7 or so in this process.

Although this approach goes a long way in making the direct field-oriented con-
trol robust with respect to parameter variations, the design can be made even more
robust by adding a torque calculator and feedback loop. From (3.5-9), recall that
torque may be expressed as

T,= (Afis fos = Aesisy) (13.6-5)

Furthermore, the stator flux may be expressed as

Aaas = Listogs ¥ Zogm (13.6-6)

Substitution of (13.6-6) into (13.6-5) yields

T,= (/tilmif]S Aomiss) (13.6-7)
which suggests that an estimate for torque can be calculated as

N 3 P —~s —~5 =S

T,=>- (Adm = Ao ds) (13.6-8)

With the torque calculator present, it is possible to introduce a torque feedback
loop shown in Figure 13.6-2. For the purposes of analysis of this loop, it is conve-
nient to define

_ 3 PLMs,est rex
test — EE L;r dr

(13.6-9)

which will be treated as a constant parameter for the purposes of torque loop
design. For the purpose of gaining intuition about the performance of the flux loop,
it is convenient to assume that

T, = Ktzgj (13.6-10)
where

3PLMS 1€

K === d (13.6-11)
ta2210,

\G\ 4L'rr,est’\
3PLM,()stﬂ§r
+

Figure 13.6-2 Torque control loop.
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Under these conditions, it is readily shown that transfer function between actual
and commanded torque is given by

T, = ﬂ (13.6-12)
T; T Kt,ests 1
'K

t

Upon inspection of (13.6-12), it is clear that at dc, there will be no error between the
actual and commanded torque in the steady state (at least if the error in the current
and flux sensors is ignored). Further, if K, and K, are equal, the transfer func-
tion will be unity, whereupon it would be expected that the actual torque would
closely tract the commanded torque even during transients. The time constant ,
is chosen as small as possible subject to the constraint that 2zf 7,K, /K, > 1 s0
that switching frequency noise does not enter into the torque command.

Incorporating the rotor and torque feedback loops into the direct field
oriented-control yields the robust field-oriented control depicted in Figure 13.6-3.
Therein, the use of a flux estimator, torque calculator, and closed-loop torque and
flux controls yields a drive that is highly robust with respect to deviations of the
parameters from their anticipated values.

The start-up performance of the direct field-oriented control is depicted in
Figure 13.6-4. Therein, the machine, load, and speed controls are the same as
the study depicted in Figure 13.3-4, with the exception that the parameters of
the speed control were changed to K, = 16.4 N-m-s/rad and z,, = 0.2second
in order to take advantage of the nearly instantaneous torque response char-
acteristic of field-oriented drives. Parameters of the field-oriented controller
were: 7,;, = 100 s, 7, = 50 ms, and 7, = 50 ms. The current commands were

L]
DC 25
Source Inverter %}* Agm
T i, 5
Current 4P s PN
Control s v v
ot Torque Estimator|  {Flux Calculator|
lgs (13.6-7) Fig. 13.5-1
Te—3 Torque Control 0, A |
Fig.13.6-1 .
s f,

e*

dr

Flux Control
Fig.13.6-2

dr

Figure 13.6-3 Robust direct rotor field oriented control.
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Figure 13.6-4 Start-up performance of robust direct field oriented drive.

achieved using a synchronous current regulator (Fig. 12.11-1) in conjunction
with a delta-modulated current control. The synchronous current regulator
time constant 7., and delta modulator switching frequency were set to 16.7 ms
and 10 kHz, respectively. Initially, the drive is operating at zero speed, when,
approximately 250 ms into the study, the mechanical speed command is stepped
from 0 to 188.5 rad/s. The electromagnetic torque steps to the torque limit
(which was set to 218 N-m) for approximately 1.5 seconds, after which the torque
command begins to decrease as the speed approaches the commanded value.
The drive reaches steady-state conditions within 2 seconds, and at the same time,
the peak current utilized was only slightly larger than the steady-state value.
In this context, it can be seen that although the control is somewhat elaborate,
it can be used to achieve a high-degree of dynamic performance with minimal
inverter requirements. It is also interesting to observe that the magnitude of the
air-gap flux was essentially constant throughout the entire study.

375



376

13 Induction Motor Drives
13.7 Indirect Rotor Field-Oriented Control

Although direct field-oriented control can be made fairly robust with respect to
variation of machine parameters, the sensing of the air-gap flux linkage (typically)
using hall-effect sensors is somewhat problematic (and expensive) in practice. This
has led to considerable interest in indirect field-oriented control methods that are
more sensitive to knowledge of the machine parameters but do not require direct
sensing of the rotor flux linkages.

In order to establish an algorithm for implementing field-oriented control with-
out knowledge of the rotor flux linkages, it is useful to first establish the electrical
frequency that is utilized in direct field-oriented control. From the g-axis rotor
voltage equation

0 = 1,1l + (0, — 0,) A4, + DAY, (13.7-1)

rreqr
Since )/qer = 0 for the direct field-oriented control, (13.7-1) necessitates

i
w, = w, — r;% (13.7-2)
dr

Using (13.4-12) to express i'qe, in terms of ig,, and (13.4-10) to express A/j, in terms
of i¥ , (13.7-2) becomes

v
W, = W, + — = (13.7-3)
Lrr T,
This raises an interesting question. Suppose that instead of establishing 8, utilizing
the rotor flux calculator in Figure 13.5-1, it is instead calculated by integrating w,,
where w, is established by

ris
W, = 0, + — (13.7-4)

L”’ lds
As it turns out, this is sufficient to satisfy the conditions for field-oriented control
/l’qer =0and i’der = 0 provided that if;s‘ is held constant. To show this, first consider

the rotor voltage equations

0 = 1l + (0, — 0) Xy + pAYy, (13.7-5)
0 =1/l — (0, — @) Ay + DAy, (13.7-6)
Substitution of (13.7-4) into (13.7-5) and (13.7-6) yields
0=ri" + L;%—jx’e +pAS (13.7-7)
— Trigr L/ ie* dr p qr .
" “de
02yt — T e e (13.7-8)
=nlgy ITle_* qr PAgr .

T “de
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The next step is to utilize the rotor flux linkage equations into (13.4-7) and (13.4-8),
which upon making the assumption the stator currents are equal to their com-
manded values yields

’ve LMS qs r lf}?
e e . e
0="r. L—/ g + L,’ = (LA + Lagsils] + 04, (13.7-9)
rr rr Lge
_ € r:’ lgﬁ re ! s1€ Es
0=rig — L_,le_*/l qr +p [er qr + LMslds] (13.7-10)
rr tds

Noting that pif;; = 0 and rearranging (13.4-11) and (13.7-10) yields

/ jex
e e qs .re
pAy = —L—,/l’ ;f* i3 (13.7-11)
ds
) r r ig:
pl/der = L/r gzr + /r ) l-e_*/l/qer (13.7-12)
(er) ds

Provided that pi’ = 0, (13.7-11) and (13.7-12) constitute a set of asymptotically
stable differential equations w1th an equilibrium point of 47, . =0andi’; =0.The
conclusion is that A7, > and ;. will go to and stay at zero, thereby satlsfylng the
conditions for field- orlented control.

Figure 13.7-1 depicts the block diagram of the indirect rotor field-oriented con-
trol, which is based on (13.6-2), (13.6-3), and (13.7-3). As can be seen, it is con-
siderably simpler than the direct field-oriented control—though it is much more
susceptible to performance degradation as a result of error in estimating the effec-
tive machine parameters.

The start-up performance of the indirect field-oriented drive is depicted in
Figure 13.7-2. Therein, the parameters of the induction machine, speed control,

DC ®
Invert ( ) L
Source fverter \ J M)y

Nrir-16
Current
Control

T"' % 4'Lr’rc est ) leqﬁ'

/1(1); 3PL ln,extﬂ“dr 93
N

Lo % ’
« 1 Lis N Frest
Lm, est D D er, est

Figure 13.7-1 Indirect rotor field oriented control.
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Figure 13.7-2 Start-up performance of indirect field oriented drive.

inverter, and current regulator are all identical to those of the corresponding study
shown in Figure 13.6-4. In fact, comparison of Figure 13.6-4. with Figure 13.7-2
reveals that the two controls give identical results. This is largely the result of the
fact that the estimated parameters were taken to be the parameter of the machine,
and that the machine was assumed to behave in accordance with the machine
model described in Chapter 3. However, in reality, the machine parameter
can vary significantly. Because of the feedback loops, in the case of the direct
field-oriented control parameter, variations will have relatively little effect on per-
formance. In the case of the indirect field oriented drive, significant degradation
of the response can result. This is illustrated in Figure 13.7-3, which is identical
to Figure 13.7-2, with the exception that an error in the estimated parameters is
included in the analysis; in particular Ly, = 1.25Ly, and r; ., = 0.75r,. As can
be seen, although the speed control still achieves the desired speed, the transient
performance of the drive is compromised, as can be seen by the variation in
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Figure 13.7-3 Start-up performance of indirect field oriented drive with errors in
estimated parameter values.

air-gap flux linkages and electromagnetic torque. This degradation is particularly
important at low speeds where instability in the speed or position controls can
result.

13.8 Direct Torque Control

Another established method of controlling the torque in an induction machine is
the method of DTC [6-9]. A block diagram of an induction motor drive using DTC
is depicted in Figure 13.8-1, wherein it is assumed that a three-phase induction
machine is supplied by a voltage source inverter (Chapter 10). As shown, the DTC
includes a block that estimates the stator flux and torque based on measured volt-
ages and currents, and a set of comparators that compare the estimated stator flux
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Figure 13.8-1 Direct torque control of an induction motor.

Induction
Motor

magnitude and electromagnetic torque with their commanded values (denoted
with an asterisk), and a table look-up block that supplies the switching signals
to the inverter through a sample/hold block that prevents the switching state from

changing too fast.

In order to explain the underlying concepts behind DTC, it is helpful to define
the stator space flux vector 4, such that its horizontal component is 43, and vertical
component is — 47 , as shown in Figure 13.8-2a. Likewise, it is convenient to define
the inverter output voltage vectors V, through V,, corresponding to each of the
inverter switching states, such that the horizontal component is v;; and vertical

Desired Vs V2 NEY
“w - steady-state /N | AN T Tvd"
S trajectory
s
PR
- }\-,‘. \\
Voo \ Vy Vi .
ll S ! V. V. | Vs
R ; ; 2 0 7 >
L -3 Ve 3 Ve
A
g T ﬁvdu
Vs Ve 3
U&.Y
(b)

Figure 13.8-2 Stator flux and achievable voltage vectors.



13.8 Direct Torque Control

Table 13.8-1 Achievable Voltage Vectors and
Corresponding Switching State.

Switching State

Voltage Vector T,/ 74 T,/ 75 T/ 76
A 0 0 0
\'A 1 0 0
v, 1 1 0
v, 0 1 0
V4 0 1 1
v, 0 0 1
\2 1 0 1
Y 1 1 1

N

component is -7 . These voltage vectors as summarized in Table 13.8-1 and plot-
ted in Figure 13.8-2b.

In the steady state at constant torque and rotor speed, the stator flux vector A
ideally has a constant magnitude and rotates in the counterclockwise direction
at an angular velocity of w,. The steady-state stator flux trajectory for the desired
torque is shown as a dashed line in Figure 13.8-2a. Utilizing the concept of north
and south poles discussed in Chapter 2, A, points in the direction of the net south
pole as it enters the inner periphery of the stator. If the north pole attributed to
the rotor currents lags (leads) 4, the electromagnetic torque will be positive (neg-
ative). In either case, advancing A in the counterclockwise direction will increase
T, and delaying A, will decrease T,.

At this point, it is possible to explain the underlying concept behind DTC. For
this purpose, it is assumed arbitrarily that, at a given instant of time, A, lies in Sec-
tor I (Fig. 13.8-2a) and its magnitude is smaller than the commanded IA,". The
control system should then select the inverter switching state that increases the
magnitude of A, and, if T, is smaller than T}, advances A in the counterclockwise
direction. From Figure 13.8-2b, voltage vector V, should be selected. Using Fara-
day’s law, it can be argued that the subsequent change in A, will be in the direction
of V,. Specifically, combining the relations A7 ~ ATvy  and A2% ~ ATv; , where
AT is the sample/hold interval, into a single vector relation yields the desired
result. While the direction of the ensuing change in A, will be along V,, the mag-
nitude of the change, A|4,|, will be proportional to AT, which should be carefully
selected so that A|4| is not too large or too small.
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Using a similar argument with reference to Figure 13.8-2a,b, if it is necessary
to increase flux and decrease torque, voltage vector V, should be selected. On the
other hand, if A lies outside the circle while still located in Sector I, and the torque
is smaller (larger) than its commanded value, it is necessary to decrease the mag-
nitude of A, while advancing (delaying) its counterclockwise rotation. Referring
again to Figure 13.8-2a,b, voltage vector V; (V) should be selected. In Reference 9,
voltage vector V, or V,, is chosen if T, > T irrespective of the magnitude of the
stator flux, which results in zero voltages applied to the stator and only a small
subsequent change in the stator flux vector (due to the ohmic voltage drop in the
stator windings). The preceding switching states are summarized in the column
corresponding to Sector I of Table 13.8-2. Therein, AT, and A|A| are the desired
change in torque and flux, respectively. A similar argument can be applied if 4, lies
in any of the other sectors shown in Figure 13.8-2, resulting in a cyclic permutation
of the subscripts as shown in Table 13.8-2.

To illustrate the dynamic performance of an induction motor drive with DTC,
it is assumed that the motor described in Section 13.2 is operating at 200 N-m and
1800 rpm, whereupon the torque command is stepped to —200 N-m while holding
the commanded stator flux magnitude at its rated value (1.0 V-s) throughout the
study. The resulting electromagnetic torque and stator flux magnitude are depicted
in Figure 13.8-3 wherein it is assumed that over the time interval shown, the rotor
speed does not change. For the given study, the sample/hold rate was set to 4 kHz.
As shown, the torque response is very rapid and there is a negligible change in the
magnitude of the stator flux. A key advantage of DTC is the fact that the machine
parameters are not required to implement the control; however, a disadvantage is
the potential for high torque ripple.

Table 13.8-2 Switching Table for Direct Torque Control.

Sector
AT, Al | Il 1l v \" Vi
1 1 v, V, \A Vs V, \4
0 1 v, vV, v, V, v, Vo
-1 1 Ve A\ V, V, vV, V
1 0 v, v, \A Ve \A v,
0 0 Vo \Z V, \Z V, v,
-1 0 \Y% V, \% A% \Y% V.

[
o
—
N}
w
N
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200

-200 A
(A

0.1 0.2

Figure 13.8-3 Step response of an induction motor with DTC.

13.9 Slip Energy Recovery Drives

If an induction machine is supplied by a fixed-frequency fixed-amplitude sup-
ply, it exhibits the well-known torque-versus-speed characteristic discussed
in Section 3.8. Therein, it was mentioned that increasing the rotor resistance
has the benefit of increasing the starting torque and concurrently reducing the
reactive power drawn from the source during startup from zero speed. However,
once the motor has accelerated to its final steady-state speed, the slip will be larger
than with the original rotor resistance thereby increasing losses. With the advent
of modern power electronics, it is possible to achieve the benefits of increasing
rotor resistance without the associated power losses.

A typical slip energy drive system is depicted in Figure 13.9-1. As shown, the sta-
tor is connected to a fixed-frequency, fixed-amplitude source, which also supplies
an active bridge rectifier whose dc output is regulated to a fixed value. The dc volt-
age is then converted to three-phase ac by a six-step inverter using, for example, a
sine-triangle or space vector modulator (STM or SVM) as described in Section 10.7.
Using this approach, it is possible to control both the amplitude and frequency of
the voltages applied to the rotor windings. By doing so appropriately, it is pos-
sible to set the electromagnetic torque to any desired value within design limits
over a range of rotor speeds. It is also possible to control the net reactive power
supplied to or by the electric source. Such an arrangement is commonly used in
modern wind turbine generators at the multimegawatt level where the rotor speed
at which optimum power extraction occurs varies as a function of the wind speed.

A strategy that can be used to control the electromagnetic torque can be estab-
lished by considering the steady-state relationships between the rotor and stator
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, (meas)
11‘ - 11‘

Figure 13.9-1 Circuit/block diagram of a slip energy recovery drive system.

voltage and currents, which are repeated here for convenience. The steady-state
real and reactive power supplied to the stator windings may be expressed as

( qqus + Vislas) (13.9-1)
3
Q= 5 (Vaslys = Vaslgs) (13.9-2)

Likewise, the steady-state real and reactive power supplied to the rotor windings
may be expressed as

P = % (Vadoy + VLI (13.9-3)
3
Q== (Vq’,I;r - Vi) (13.9-4)

For analysis purposes, it is convenient to select the synchronous reference frame
with its time-zero location set so that Vi = 0. The steady-state stator voltage
equations become

Ve =1l + o, ‘I’e (13.9-5)

s'gs

0=rde — o ¥, (13.9-6)
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where ¥ = w, 4. In terms of currents, the stator voltage equations become

Ve = rdes + XI5+ Xy Iy, (13.9-7)

Ve =S — X leo — Xy Ty, (13.9-8)
The rotor voltage equations may be expressed similarly as

Vi =1l +s (X105 + X Ty (13.9-9)

Vg =115 =5 (Xyles + X, T,) (13.9-10)

where s = (w, — ®,)/w, is the slip. To establish the voltages that should be applied to
the rotor so as to produce the desired value of torque, we start with the established
expression for torque

P31
T, = T2, (W Tos — PoI5) (13.9-11)

If the stator resistance is small, then from (13.9-5) and (13.9-6), V; ~ o, and

e ~ _\pe
VdSN ‘qu, whereupon

P31
T, ~ EEGT (quslgs + V;slzeis) (13.9-12)
e
Comparing (13.9-12) with (13.9-1),
P1
T,~ ——P 13.9-13
¢ 2w, ° ( )

The preceding steady-state relationships suggest the “feedforward” control
strategy shown in Figure 13.9-2. Therein, the measured peak stator voltage is
established using a phase-locked loop (PLL), which also determines the electrical
frequency w,. Based on the commanded electromagnetic torque and reactive
power, the steady-state equations are used to establish, in sequence, the desired
stator currents, the desired rotor currents, and finally the commanded rotor
voltages, which are supplied to the inverter modulator (SVM or STM). If the
calculated rotor currents and voltages are substituted into the expression for rotor
power (13.9-3) and the stator losses are small,

P, ~ —sP, (13.9-14)

If the converter losses are small, the net electrical power supplied to the drive
system is

P,~P,+P, (13.9-15)

which is positive if the drive system is operating as a motor and negative if it is
operating as a generator. The main advantage of a slip energy recovery drive can
be seen from (13.9-14) and (13.9-15). If the rotor speeds w, over which the drive
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Figure 13.9-2 Feedforward control for a slip energy recovery drive system.

system operates lie in a narrow range about the fixed electrical frequency w,, the
slip s will be small, and from (13.9-14) and (13.9-15), the power that needs to be
supplied to the rotor windings, which determines the power rating of the associ-
ated rectifier and inverter, is a small fraction of the net electric power P, supplied
to or by the drive system.

13.10 Conclusions

In this chapter, a variety of induction motor drive schemes have been explored
including volts-per-hertz, compensated volts-per-hertz, constant-slip, rotor flux
oriented, and DTC. If the rotor speed is expected to vary inside a limited range
near synchronous speed, slip energy recovery drive systems are shown to have an
advantage. This chapter is intended to be an introduction to these diverse methods
of control. For detailed aspects and refinements to the basic approaches described
herein, the reader is referred to Reference 9.
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Problems

13.1 Derive (13.2-4) and (13.2-7).

13.2 Calculate the characteristics shown in Figure 13.2-4 if (a) r

= 0.75r,

s,est

and (b) L, = 1.1Lg.

ss,est

13.3 Consider the 50-hp induction machine used in the studies in this chapter.

Suppose the combined inertia of the machine and load is 2 N-m-s. Com-
pute the minimum value of a,,,, of a slew rate limiter by assuming that
there is no load torque and that the rated electrical torque is obtained.

13.4 Using the parameters of the 50-hp induction motor set forth in this

chapter, plot the ratio of power loss divided by torque (see 13.3-18) and
the corresponding value of the magnitude of the air-gap flux as a function
of slip frequency w,.
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135

13.6

13.7

13.8

13.9

13.10

13.11

13.12

Repeat the study depicted in Figure 13.3-2 if (a) r,,, = 0.75r; and
(b) r;’m =1.257].

Derive the transfer function between commanded and actual speed if the
control used in Figure 13.2-5 is used. Assume that the electromagnetic
torque is equal to its commanded value, that the load torque is zero, and
that the combined inertia of the electric machine and load is J.

Suppose it is desired that the rms value of the fundamental component of
the rotor flux, 4,, in the constant slip control is to be limited to the value
that would be obtained at rated speed, rated frequency, and rated voltage
for no-load conditions. Compute the numerical value of 4,. If maximum
torque per amp control is used, at what percentage of base torque does the
control change from constant slip to constant flux?

Using the same criterion as in problem 6, compute %" for field oriented
control.

At moderate and high speeds, it is possible to measure the applied volt-
ages and currents, and based on this information, form an estimate of Afls
and 2, . Draw a block diagram of a control that could achieve this. Given
Ags and A7, devise flux and torque control loops that could be used to
add robustness to the indirect field-oriented controller. Why would this
method not work at low speeds?

Derive (13.6-4).
Derive (13.6-12).

Derive an indirect field oriented control strategy in which A/}, =0 and
iy = 0.
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Permanent-Magnet AC Motor Drives

14.1 Introduction

There are a great variety of permanent-magnet ac motor drive configurations.
Generally, these may be described by the block diagram in Figure 14.1-1. Therein,
the permanent-magnet ac drive is seen to consist of four main parts, a power
converter, a permanent-magnet ac machine (PMAM), sensors, and a control
algorithm. The power converter transforms power from the source (such as the
local utility or a dc supply bus) to the proper form to drive the PMAM, which, in
turn, converts electrical energy to mechanical energy. One of the salient features
of the permanent-magnet ac drive is the rotor position sensor (or at least an
estimator or observer). Based on the rotor position, and a command signal(s),
which may be a torque command, voltage command, speed command, and so on,
the control algorithms determine the gate signal to each semiconductor in the
power electronic converter.

In this chapter, the converter connected to the machine will be assumed to be a
fully controlled three-phase bridge converter, as discussed in Chapter 10. Because
we will primarily be considering motor operation, we will refer to this converter
as an inverter throughout this chapter.

The structure of the control algorithms determines the type of permanent-
magnet ac motor drive, of which there are two main classes, voltage-source-based
drives and current-regulated drives. Both voltage-source and current-regulated
drives may be used with PMAMs with either sinusoidal or nonsinusoidal back
emf waveforms. Machines with sinusoidal back emfs may be controlled so as
to achieve nearly constant torque; however, machines with a nonsinusoidal
back emf may be less expensive to manufacture. The discussion in this chapter
will focus on the machines with sinusoidal back emfs; for information on the
nonsinusoidal drives, the reader is referred to References [1-3].

Analysis of Electric Machinery and Drive Systems, Fourth Edition.

Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, and Steven D. Pekarek.

© 2025 The Institute of Electrical and Electronics Engineers, Inc. Published 2025 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/krause_aem4e
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Figure 14.1-1 Permanent-magnet ac motor drive.

In this chapter, a variety of voltage-source and current-regulated drives featur-
ing machines with sinusoidal back emf waveforms will be analyzed. For each
drive considered, computer simulations will be used to demonstrate performance.
Next, average-value models for each drive are set forth, along with a correspond-
ing linearized model for control synthesis. Using these models, the steady-state,
transient, and dynamic performance of each drive configuration considered will
be set forth. Design examples will be used to illustrate the performance of the
drive in the context of a control system.

14.2 Voltage-Source Inverter Drives

Figure 14.2-1 illustrates a voltage-source-modulated inverter-based permanent-
magnet ac motor drive. Here, voltage-source inverter refers to an inverter being
controlled by a voltage-source modulation strategy (six-stepped, six-step modu-
lated, sine-triangle modulated, etc.). Power is supplied from the utility through a
transformer, which is depicted as an equivalent voltage behind inductance. The
transformer output is rectified using a semi-controlled three-phase bridge con-
verter, as discussed in Chapter 9. Since this converter is operated as a rectifier (i.e.,

Utility / Transformer Rectifier DC Link Inverter Permanent Magnet AC Machine

.L'.\
6 Sensor
Other Inputs —{ Control 0,

Other Outputs +— Algorithms

Command Signals

Figure 14.2-1 Permanent-magnet ac motor drive circuit.
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converting power from the ac system to the dc system), it will be simply referred
to as a rectifier herein. The rectifier output is connected to the dc link filter, which
may be simply an LC filter (L, Cg.), but which may include a stabilizing filter
(Lg, rg» Cyp) as well. The filtered rectifier output is used as a dc voltage source for
the inverter, which drives the PMAM. This voltage is commonly referred to as the
dc link voltage. As can be seen, rotor position is an input to the controller. Based
on rotor position and other inputs, the controller determines the switching states
of each of the inverter semiconductors. The command signal to the controller may
be quite varied depending on the structure of the controls in the system in which
the drive will be embedded; it will often be a torque command. Other inputs to the
control algorithms may include rotor speed and dc link voltage. Other outputs may
include gate signals to the rectifier thyristors if the rectifier is phase-controlled.

Variables of particular interest in Figure 14.2-1 include the utility supply volt-
age, V,,, Vy,, and v, the utility current into the rectifier i, iy, and i, , the rectifier
output voltage, v,, the rectifier current, i, the stabilizing filter current i, the sta-
bilizing filter capacitor voltage v, the inverter voltage v,., the inverter current
i4e> the three-phase currents into the machine i, i,,, and i., and the machine
line-to-neutral voltages v, v, and v,,.

Even within the context of the basic system shown in Figure 14.2-1, there are
many possibilities for control, depending on whether or not the rectifier is phase-
controlled and the details of the inverter modulation strategy. Regardless of the
control strategy, it is possible to relate the operation of the converter back to the
idealized machine analysis set forth in Chapter 4, which will be the starting point
for our investigation into voltage-source inverter fed permanent-magnet ac motor
drive systems.

cs?

14.3 Equivalence of Voltage-Source Inverters to an
Idealized Source

Voltage-source inverters are inverters with a voltage-source modulator. In order
to make use of our analysis of the PMAM set forth in Chapter 4 when the volt-
age source is an inverter rather than an ideal source, it is necessary to relate the
voltage-source inverter to an ideal source. This relationship is a function of the
type of modulation strategy used. In this section, the equivalence of six-stepped,
six-step-modulated, sine triangle-modulated, extended-sine triangle-modulated,
or space-vector-modulated inverter to an idealized source is established.

The six-stepped inverter-based permanent-magnet ac motor drive is the simplest
of all the strategies to be considered in terms of generating the signals required
to control the inverter. It is based on the use of relatively inexpensive Hall effect
rotor position sensors. For this reason, the six-stepped inverter drive is a rela-
tively low-cost drive. Furthermore, since the frequency of the switching of the
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semiconductors corresponds to the frequency of the machine, fast semiconduc-
tor switching is not important, and switching losses will be negligible. However,
the inverter does produce considerable harmonic content, which will result in
increased machine losses.

In the six-stepped inverter, the on/off status of each of the semiconductors is
directly tied to electrical rotor position, which is accomplished through the use
of the Hall effect sensors. These sensors are configured to have a logical 1 output
when they are under a south magnetic pole and a logic 0 when they are under a
north magnetic pole of the permanent magnet, and are arranged on the stator of
the PMAM asillustrated in Figure 14.3-1, where ¢, denotes the position of the Hall
effect sensors. The logical output of sensors H1, H2, and H3 are equal to the gate
signals for T1, T2, and T3, respectively, so that the gating signals are as indicated
in Figure 14.3-2. The gate signals T4, T5, and T6 are the logical complements of
T1, T2, and T3, respectively.

Comparing the gating signals shown in Figure 14.3-2 with those illustrated in
the generic discussion of six-step operation in Chapter 10 (see Fig.12.3-1), it can
be seen that the two sets of waveforms are identical provided the converter angle
0, is related to rotor position and the Hall effect position by

0.=0.+¢, (14.3-1)

In Section 10.3, expressions for the average-value of the g- and d-axis voltages in
the converter reference frame were derived. Taking these expressions as dynamic
averages,

. 2.

Vs = ~Vae (14.3-2)
Pas =0 (14.3-3)
bs-axis ¢, HI1 Figure 14.3-1 Electrical

— diagram of a permanent-magnet
ac machine.

» (15-axis

cs-axis
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Figure 14.3-2 Semiconductor switching signals.

From (14.3-1), the difference in the angular position between the converter ref-
erence frame and rotor reference frame is the Hall effect position ¢,,. Using this
information, the dynamic-average of the stator voltages may be determined in the
rotor reference frame using the frame-to-frame transformation °K{, which yields

ﬁ(’;s = %Qdc cos ¢, (14.3-4)
o= —%9@ sin ¢, (14.3-5)

From (14.3-4) and (14.3-5), we conclude that at least in terms of the fundamental
component, the operation of the PMAM from a six-stepped inverter is identical to
a PMAM fed by ideal three-phase variable-frequency voltage source with an rms
amplitude of

o= =25 (14.3-6)

N \/57[

and a phase advance of

¢, = ¢y (14.3-7)

Figure 14.3-3 illustrates the steady-state performance of a six-stepped inverter.
In this study, the inverter voltage v, is regulated at 125 V and the mechanical rotor
speed is 200 rad/s. The machine parameters are r, = 2.98 Q, Lq =L; =11.4mH,
Ar, = 0.156 Vs, and P = 4. There is no phase advance. As can be seen, the nonsinu-
soidal a-phase voltage results in time-varying g- and d-axis voltages. The effect of
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Figure 14.3-3 Steady-state performance of a six-stepped permanent-magnet ac motor
drive.

the harmonics is clearly evident in the a-phase current waveform, as well as the
g- and d-axis current waveforms. Also apparent are the low-frequency torque har-
monics (six times the fundamental frequency) that result. The current harmonics
do not contribute to the average torque; therefore, the net effect of the harmonics
is to increase machine losses. On the other hand, since the inverter is switching at
a relatively low frequency (six times the electrical frequency of the fundamental
component of the applied voltage), switching losses are extremely low.

This drive system is easy to implement in hardware; however, at the same time,
it is difficult to utilize in a speed control system, since the fundamental compo-
nent of the applied voltage cannot be adjusted unless a controlled rectifier is used.
Although this is certainly possible, and has often been done in the past, it is gen-
erally advantageous to control the applied voltages with the inverter rather than
rectifier since this minimizes the total number of power electronics devices.
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In order to control the amplitude of the fundamental component of the applied
voltage, six-step modulation may be used, as is discussed in Section 10.4. In this
case, the gate drive signals T1-T6 are modulated in order to control the amplitude
of the applied voltage. Recall from Section 10.4 that for six-step modulation, the
dynamic-average g- and d-axis voltages are given by

‘A)gs = %dﬁdc (14.3-8)
and
T)ZS =0 (14.3-9)

Using (14.3-1) to relate the positions of the converter and rotor reference frames,
the frame-to-frame transformation may be used to express the g- and d-axis voltage
in the rotor reference frame. In particular,

Vs = %dﬁdc cos ¢y, (14.3-10)
o= —%dﬁdc sin ¢, (14.3-11)

From (14.3-10) and (14.3-11), it is clear that the effective rms amplitude of the
applied voltage is

b= 24 (14.3-12)

The phase advance given by (14.3-7) is applicable to the six-step modulated drive
in addition to the six-stepped inverter.

Figure 14.3-4 illustrates the performance of a six-step modulated drive. For this
study, the parameters are identical to those for the study depicted in Figure 14.3-3,
with the exception of the modulation strategy, which is operating with a duty cycle
of 0.9 at a frequency of 5 kHz, and the dc rail voltage is 138.9 V, which yields the
same fundamental component of the applied voltage as in the previous study. As
can be seen, the voltage waveforms posses an envelop similar in shape to that of
the six-step case; however, they are rapidly switching within that envelope. Note
that the current waveforms are similar to the previous study, although there is
additional high-frequency harmonic content.

By utilizing six-step modulation, the amplitude of the applied voltage is readily
varied. However, due to the increased switching frequency, the switching losses in
the converter are increased. The losses in the machine will be similar to those in
the previous study.

Like six-step modulation, sine-triangle modulation may also be used to con-
trol the amplitude of the voltage applied to the PMAM. However, in this case,
Hall effect sensors are generally not adequate to sense rotor position. Recall from
Section 10.5 that phase-leg duty cycles are continuous function of converter angle,
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Figure 14.3-4 Steady-state performance of a six-step-modulated permanent-magnet ac
motor drive.

which implies that they will be continuous functions of rotor position. For this
reason, a resolver or an optical encoder must be used as the rotor position sen-
sor. Although this increases the cost of the drive, and also increases the switching
losses of the power electronics devices, the sine-triangle modulated drive does
have an advantage in that the low-frequency harmonic content of the machine
currents are greatly reduced, thereby reducing machine losses in machines with a
sinusoidal back emf and also reducing acoustic noise and torque ripple.

In the case of the sine-triangle modulated inverter, the angular position used to
determine the phase-leg duty cycles, that is, the converter angle, is equal to the
electric rotor position plus an offset, that is,

0.=0,+¢, (14.3-13)
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From Section 10.5,

%dﬁdc 0<d<1

s =1 (14.3-14)
;ﬁdc f(d)d>1
03 =0 (14.3-15)
where
1 1\2 1 1
f(d)_i 1_<E> +Zd<7r—23rccos<a>> d>1 (14.3-16)

Using (14.3-13) to compute the angular difference of the locations of the con-
verter and rotor reference frames, the dynamic averages of the g- and d-axis stator
voltages may be expressed as

%ﬁdcd cos ¢, d<1

Dgs = 3 (14.3-17)
2.
— Vg f(d)cos¢p, d>1

—%ﬁdcd sing, d<1

g = 3 (14.3-18)

2, .
~ Vg f(d)sing, d>1

Figure 14.3-5 illustrates the performance of a sine-triangle modulated inverter
drive. The parameters and operating conditions are identical to those in the previ-
ous study with a duty cycle is 0.9 and the switching frequency of 5 kHz, with the
exception that the dc voltage has been increased to 176.8 V. This yields the same
fundamental component of the applied voltage as in the previous two studies.
Although on first inspection the voltage waveforms appear similar to the six-step
modulated case, the harmonic content of the waveform has been significantly
altered. This is particularly evident in the current waveforms which no longer
contain significant harmonic content. As a result, the torque waveform is also
devoid of low-frequency harmonics. Like six-step modulation, this strategy allows
the fundamental component of the applied voltage to be changed. In addition, the
phase can be readily changed, and low-frequency current and torque harmonics
are eliminated. However, the price for these benefits is that rotor position must be
known on a continuous basis, which requires either an optical encoder or resolver,
which are considerably more expensive than Hall effect sensors. Several meth-
ods of eliminating the need for the encoder or resolver have been set forth in
References [4, 5].

In Chapter 10, the next modulation strategy considered was extended
sine-triangle modulation. The analysis of this strategy is the same as for
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as’

vV A

Figure 14.3-5 Steady-state performance of sine-triangle-modulated permanent-magnet
ac motor drive.

sine-triangle modulation, with the exception that the amplitude of the duty cycle
d may be increased to 2/ \/§ before overmodulation occurs. Therefore, we have

N 1 ..
Vg = Edvdc cos¢, 0<d< 2/\/5 (14.3-19)

s = —%d% sing, 0<d<2/V3 (14.3-20)

The final voltage-source modulation strategy considered in Chapter 10 was
space-vector modulation. This strategy is designed to control the inverter semi-
conductors in such a way that the dynamic average of the g- and d-axis output
voltages are equal to the g- and d-axis voltage command, provided that the peak
commanded line-to-neutral input voltage magnitude is less than v,/ \/5 If this
limit is exceeded, the g- and d-output voltage vector retains its commanded
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direction, but its magnitude is limited. Thus, we have that

_
vgj v:pk <Vg/ \/§
N

=20, Vi 14.3-21
T e Vi 2 Ve V3 (320
vspk

v v:pk < vdc/\/g

A A Ik

O =1 Pac Yy N (14.3-22)
C

* spk =
3 vspk

where

Vopk = (V) + (v2)? (14.3-23)

In order to summarize the results of this section, notice that in each case, the
dynamic-average g- and d-axis voltages may be expressed as

Dgs = Dgemcos , (14.3-24)
v, = —Dgmsin g, (14.3-25)
where
(2 . .
= six-step operation
T
Ed six-step modulation (d < 1)
/4
%d sine-triangle modulation (d < 1)
_— %f(d) sine-triangle modulation (1 < d) (14.3-26)
1 . . .
Ed extended sine-triangle modulation (d < 2/ \/5)
v:pk .
” space-vector modulation (v;*‘pk <vg/ \/5)
dc
% space-vector modulation (v;‘pk > Vy./ \/E)
3

In the case of space-vector modulation, observe that ¢, is defined as

s .

¢, = angle (Vi; —jv) (14.3-27)
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14.4 Average-Value Analysis of Voltage-Source
Inverter Drives

The average-value model of a voltage-source inverter drive consist of five parts,
(1) the rectifier model, (2) the dc link and stabilizing filter model, (3) the
inverter model, and (4) the machine model. From Chapter 9, recall that the
dynamic-average rectifier voltage is given by

D, =v,cosa —r,i, — Lpi, (14.4-1)
where v,, 7., and I, are given by
346
i—E three-phase rectifier
ve=1 (14.4-2)
2v2 .
——E single-phase rectifier
/4
3 .
~w,,L. three-phase rectifier
r, = ’2[ (14.4-3)
;a)euLC single-phase rectifier
L= 2L, tl.lree—phase rectiﬁer (14.4-4)
L. single-phase rectifier

In (14.4-2)-(14.4-4), w,, is the radian electrical frequency of the source feeding
the rectifier, not to be confused with the fundamental frequency being synthesized
by the drive, and E is the rms line-to-neutral utility voltage (line-to-line voltage in
single-phase applications), and L, is the commutating inductance. In the typical
case wherein a transformer/rectifier is used, E and L, reflect the utility voltage
and transformer leakage impedance referred to the secondary (drive) side of the
transformer.

The electrical dynamics of the rectifier current may be expressed as

Ly.pi, =V, — Vg, — Vg, (14.4-5)

Treating the variables in (14.4-5) as dynamic-average values yields

Lypl, =0, — Dy — 1yl (14.4-6)
In (14.4-6), the rectifier voltage is given by (14.4-1); however, that expression for
the rectifier voltage involves the time derivative of f,. Hence, (14.4-1) and (14.4-6)
should be combined into a single differential equation. In particular,

o Vyg COS O — Vg — Iyl

pi, = T (14.4-7)

rl
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where

Ty =1, + Fac (14-4'8)

Ly=L, +Lg (14.4-9)

Finally, using Kirchoff’s laws, the dc voltage, stabilizing filter current, and stabi-
lizing filter voltage are governed by

i-i,-1

pog = 2% c - (14.4-10)
dc
A D, =D, —r,l

phy = e P T Tl T (14.4-11)

St

and
oy

ph, = Ci (14.4-12)

st

respectively. Because the rectifier current must be positive, (14.4-7) is only valid for
this condition. If the rectifier current is zero and the derivative given by (14.4-7) is
negative, then pi, should be set to zero since the diodes or thyristors will be reverse
biased. From (10.3-11), the dc current into the converter may be approximated as

. ~r
. O dos + Dy
b = 2 Lastes T Vaslas (14.4-13)
2 Dge

Substitution of (14.3-24) and (14.3-25) into (14.4-13) and simplifying yields

lge = %m < g5 COS P, — f;s sin d)v) (14.4-14)

The next step in developing the average-value model for the voltage-source
inverter drive is the incorporation of the electrical dynamics of the machine in
average-value form. Taking the dynamic-average of PMAM voltage equations
(expressed in terms of currents) and rearranging yields

AF

AF AF ’
Vg — Flgs — @0, Lgiys — 0, A,

plo, = =21 (14.4-15)
Lq
N U w,L, i
pij =& & a (14.4-16)

Ly
Note that in (14.4-15) and (14.4-16), the electrical rotor speed is not given an
average-value designation. Since the rotor speed varies slowly compared with
the electrical variables, it can generally be considered a constant as far as the
dynamic-averaging procedure is concerned. However, there are instances when
this approximation may not be completely accurate—for example, in the case of
six-stepped inverter-fed permanent-magnet ac motor drive with an exceptionally
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low inertia during the initial part of the start-up transient. Normally, however,

the approximation works extremely well in practice.
From Chapter 4, the expression for instantaneous electromagnetic torque is
given by
T, =

e

3 P i

( s + (Lg = Ll (14.4-17)
Upon neglecting the correlation between the g-axis current harmonics and the
d-axis current harmonics, (14.4-17) may be averaged to yield

T, = 2 S 2 (Al + (g = L) (14.4-18)

This approximation (i.e., assuming that the average of the products is equal to
the product of the averages) works well in the case of sine-triangle modulation
wherein there is relatively little low-frequency harmonic content. However, in the
case of the six-step operation or six-step modulation, some error arises from this
simplification in salient machines. In the case of nonsalient machines in which the
g- and d-axis inductances are equal, (14.4-18) is exact regardless of the modulation
scheme.

To complete the average-value model of the drive, it only remains to include the
mechanical dynamics. In particular,

P Te B Tl
po, == (14.4-19)
and, if rotor position is of interest,

po, =w (14.4-20)

r

Equations (14.4-19) and (14.4-20) complete the average-value model of the
voltage-source inverter drive. It is convenient to combine these relationships and
express them in matrix-vector form. This yields

. }
L 0 0 0 0
{‘rl Lrl 1
21 |=— o0 —— o 0 0 0 Em
b Cae Cy o
Ve 0 l st _i 0 0 0 Ve
Iy Ly {‘St Ly Ast
p|¥|=[ 0 © = 0 0 0 0 Dy,
Ar st , A
las 0 0 0 0 _Is 0 _lm Lgs
N A
Lgs L, v L, 1;S
o, 0 o0 0 0 0 -2 0 o,
- . P , Ld - .
0 0 0 0 3(—) 1,1;,1 0 0
L 2\2/J i
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[ iv cosa |
X Lrl r0
ar . A
SN <cos Pyigs — sin d)vlds)
2 de
0
+ 0 (14.4-21)

1. Ly
—Vg.m cos ¢, — L—a),lds
q

~r

1. . q
——9PV,msin ¢, + —w,i
I de v ld rigs

3P AT A
27 (33~ Lol =12

14.5 Steady-State Performance of Voltage-Source
Inverter Drives

In the previous section, an average-value model of a voltage-source inverter fed
PMAC motor drive was set forth. Before using this model to explore the transient
behavior of the drive, it is appropriate to first consider the steady-state perfor-
mance. Throughout this development, variables names will be uppercase, and
averages are denoted with an overbar rather than a “A” since we are consider-
ing steady-state quantities. From the work presented in Chapter 10, it is clear that
given the modulation strategy and i_/dc the average of the g- and d-axis voltages
may be obtained, whereupon the work set forth in Chapter 4 may be used to cal-
culate any quantity of interest. Therefore, the goal of this section will primarily be
to establish an expression for V..

The differential equations that govern the dynamic-average value performance
of the drive have inputs that are constants in the steady-state; therefore, the solu-
tion of these equations is also constant in the steady-state, assuming that a stable
solution exists. Therefore, the steady-state solution may be found by setting the
derivative terms equal to zero. Thus, for steady-state conditions, the rectifier volt-
age equation (14.4-7) necessitates that

0=v,ycosa—Vy —ryl, (14.5-1)
Similarly, substitution of (14.4-14) into (14.4-10) and setting the time derivative to
zero yields

- = 3 —r - .

0=I,-1I,- >m (Iqscosqﬁv -1 s1n¢v> (14.5-2)
Due to the series capacitance in the stabilizing filter, the average of the stabilizing
filter current must be equal to zero. Therefore, (14.5-2) reduces to

3 (= o
0=1I,- Sm (Iqs cos ¢, — I 5 sin ¢v> (14.5-3)
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Combining (14.5-3) with (14.5-1) yields
Ve =V,pC08X — %r,,m (T;s cos b, — Iy, sin ¢v> (14.5-4)

The next step in the development is to eliminate the g- and d-axis stator currents
from (14.5-4). To this end, setting the time derivatives in (14.4-15) and (14.4-16) to
zero and replacing the g- and d-axis voltages with the expressions (14.3-24) and
(14.3-25) yields
A/

m

(14.5-5)

= —r —r
0=Vymcosg, —rdg — oLyl — @,

0=~V msing, — rly + oL L (14.5-6)

Solving for (14.5-5) and (14.5-6) simultaneously for f;s and f;s in terms of V4., m,
and o,

r, <7d0m cos ¢, — w,ﬂ%) +w,LyV gmsin ¢,

= (14.5-7)
® 7+ oLyl
®,Ly <7dcm cos ¢, — wrﬂgn> —rV,msing,

T, = (14.5-8)
@ r2+wiLyL,

Finally, substitution of (14.5-7) and (14.5-8) into (14.5-4) and solving for Vdc,
we have that

3 .
(7] + @LgLy) vyg cOS @ + S1,ymao, A1, (7 €08 ¢, — @, L sin )

dc —
2 2 3m2 3 2gj
rs + wpLgLy + SmPryrg + 110, (Ly — Ly)m? sin 2¢,

(14.5-9)

Since (14.4-1) is only valid for rectifier currents greater than zero, it follows
that (14.5-9) is only valid when it yields a dc supply voltage such that the recti-
fier current is positive. In the event that it is not, then the rectifier appears as an
open-circuit, and all the diodes or thyristors are reverse biased. In this case, the
average dc link current must be equal to zero. Thus, it follows from (14.4-14) that

T;S cos ¢, — T;S sing, =0 (14.5-10)
Substitution of (14.5-7) and (14.5-8) into (14.5-10) yields
@, Ay (rycos ¢ — o, Ly sing,)

. = (14.5-11)

Vdc 1. =0 1
“ (rs +1w,(Ly~Lysin 2¢v>

Thus, as long as (14.5-9) yields a positive rectifier current, it is a valid expression. In
the event that (14.5-9) yields a negative rectifier current, (14.5-11) should be used.
The steady-state performance characteristics of a permanent-magnet ac motor
drive are illustrated in Figure 14.5-1. Therein the dc inverter voltage, the peak
amplitude of the fundamental component of stator current, defined by
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Figure 14.5-1 Steady-state voltage-source inverter-based permanent-magnet ac motor
drive characteristics with and without commutating inductance.
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- —r2 —r2

Ispk = gs T Ty (14.5-12)

and the average electromagnetic torque are illustrated versus speed for the same
parameters that were used in generating Figure 14.3-3. In this case, however, the
machine is connected to a transformer rectifier such thatv,, =35Vandr, =3.0 Q.
Superimposed on each characteristic is the trace that would be obtained if V;, were
held constant (i.e., there was no voltage drop due to commutating inductance). As
can be seen, the amplitude of the stator current, the electromagnetic torque, and
dc voltage are all considerably reduced due to the voltage drop that occurs due
to the commutating reactance, although the difference decreases with speed. It is
interesting to observe that above 145 rad/s, the dc voltage increases. This is due to
the fact that rectified machine voltage is greater than the voltage produced by the
rectifier diodes, hence these diodes become reverse biased.

14.6 Transient and Dynamic Performance of
Voltage-Source Inverter Drives

In this section, the transient (large disturbance) and dynamic (small disturbance)
behavior of voltage-source inverter-based drives is examined. To this end, consider
the drive system illustrated in Figure 14.2-1. The parameters for this drive sys-
tem are E = 85.5V, w,,, = 2z60rad/s, L, = 5 mH, L;, = 5 mH, and C = 1000 uF.
The rectifier is uncontrolled (diodes are used), and the inverter is sine-triangle
modulated. The machine parameters are identical to those of the machine consid-
ered in Section 14.6-3, and the load torque is equal to 0.005 N m s/rad times the
mechanical rotor speed.

Figure 14.6-1 illustrates the startup performance as the duty cycle is stepped
from 0 to 0.9 as calculated by a waveform-level model in which the switching of
each semiconductor is taken into account. As can be seen, there is a large inrush
of current on startup since initially the impedance of the machine consists solely
of the stator resistance, and since initially there is no back emf. This results in a
large initial torque so the machine rapidly accelerates. Note that the large inrush
current causes a significant drop in the dc voltage. Although the inrush current
results in a large initial torque, this is generally an undesirable affect since the ini-
tial current is well over the rated current of the machine (3.68 A, peak). In addition,
if provision is not made to avoid these overcurrents, then the inverter and recti-
fier will both have to be sized to insure that the semiconductors are not damaged.
Since the cost of the semiconductors is roughly proportional to the voltage rat-
ing times the current rating, and since the overcurrent is five times rated current,



14.6 Transient and Dynamic Performance of Voltage-Source Inverter Drives

40 ms

T,,Nm

A S~
0

0
300 -

®,,,> rad/s

0

Figure 14.6-1 Start-up performance of a sine-triangle-modulated permanent-magnet
ac motor drive as calculated using a waveform-level model.

the cost of the oversizing will be a fivefold increase in the cost of the semicon-
ductors. Fortunately, by suitable control of the duty cycle, the overcurrent can be
minimized.

It is interesting to compare the waveform-level portrayal of the drives start-up
response to the portrayal predicted by the average-value model (14.4-21), which
is illustrated in Figure 14.6-2. Comparing the two figures, it is evident that
the average-value model captures the salient features of the start-up with the
exception of the harmonics, which were neglected in the averaging procedure.
In addition to being considerably easier to code, the computation time using
the average-value representation is approximately 120 times faster than the
computation time required by a detailed representation in which the switching of
all the semiconductors is taken into account, making it an ideal formulation for
control system analysis and synthesis.
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Since many control algorithms are based on linear control theory, it is conve-
nient to linearize the average-value model. Linearizing (14.4-21) yields

N N A A T
p[a, a9, ai, a0, AT, AT, A0,| =

ror
B N 0 0 0 0 0
Lrl Lrl
1 1 0 3m, .
—_— 0 - —=— oS =~ —sin 0
Cdc Cdc Cdc ¢v0 2 Cdc ¢v0
r
0 1 w1 0 0 0
LS[ LS[ LS[
0 0 i 0 0 0 0
Cst
m, r L, Ly-r A
0 L_ Ccos ¢V0 0 0 —f —L—C()’0 —L— dso Lm
q q q q q
L r -
0 q s q3"
——sing 0 0 +—w - I
d v0 Ld ro Ld Ld qs0
2 2
0 0 0 o 3 (E) 1 3 (E) 1 0
2\2/ 7T 2\2/ 7J
- —r
_ (F+ Ly = LT Ty =Ll |

[V, cOse, ]
X0 ° 0 0 0
Lrl Lrl
- . —-r . -r -r
[ Afr i 0 0 3 (COS d)vOIqsO —sin d)vOId.sﬂ) 3 mO (Sln ¢v01qs0 + cos d’vOIdsO)
Af)dc 2 Cdc 2 Cdc
AL 0 0 0 0 0
S
Ad, |+ 0 0 0 0 0
ar 1% vV, m
Al 0 0 % cos g, - % sing,, 0
Ar
Alds _LI V 1
m
Ao, ] [0 0 - % sing,, - % cos ¢, 0
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0 0 0 0 _P1
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Am (14.6-1)
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Figure 14.6-2 Start-up performance of a sine-triangle-modulated permanent-magnet
ac motor drive as calculated using an average-value model.

In (14.6-1), the addition of a subscript zero designates the initial equilibrium point
about which the equations are linearized, and A denotes a change in a variable.
Thus

X =X, + Ax (14.6-2)

where X is any state, input variable, or output variable.

Figure 14.6-3 illustrates the startup response as predicted by the average-value
model linearized about the initial operating point. In this figure, (14.6-2) has
been used to determine each variable from its initial value and its excursion
given by (14.6-1). As can be seen, there are many discrepancies between the
prediction of the linearized model and the performance of the drive as illustrated
in Figure 14.6-1. In particular, the linearized model does not predict any pertur-
bation to the dc voltage or that there will be any rectifier current. In addition, the
linearized model predicts a significantly higher g-axis current than is observed
but fails to predict any d-axis current. The linearized model also significantly
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Figure 14.6-3 Start-up performance of a sine-triangle-modulated permanent-magnet
ac motor drive as calculated using a linearized model.

overestimates the peak torque and the final speed. Thus, this study illustrates
the hazards involved in using the linearized model to predict large disturbance
transients.

Although the linearized model cannot be used to predict large-signal transients,
it can be used for dynamic analysis such as operating point stability. To illustrate
this, Figure 14.6-4 and Figure 14.6-5 depict the performance of the drive as pre-
dicted by a waveform-level simulation and the linearized model (determined from
the initial operating point) as the duty cycle is changed from 0.9 to 1. In this case,
the linearized model accurately portrays the transient.
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Figure 14.6-4 Response of a sine-triangle-modulated permanent-magnet ac motor
drive to a step change in duty cycle as calculated using a waveform-level model.

14.7 Case Study: Voltage-Source Inverter-Based Speed
Control

Now that the basic analytical tools to analyze voltage-source inverter based
permanent-magnet ac motor motor drives have been set forth, it is appropriate to
consider the use of these tools in control system synthesis. To this end, consider
a sine-triangle modulated drive with the parameters listed in Table 14.7-1. It is
desired to use this drive in order to achieve speed control of an inertial load.
Design requirements are: (1) there shall be no steady-state error, and (2) the phase
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Figure 14.6-5 Response of a sine-triangle-modulated permanent-magnet ac motor
drive to a step change in duty cycle as calculated using a linearized model.

Table 14.7-1  Drive System Parameters.

E 855V C, 1000 uF L, 1lL4mH
w, ~ 377rad/s J 0.005N-ms* A/, 0.156Vs
L, 5mH T 2.98 Q P 4

L, 5mH L, 11.4 mH

margin will by 60° when the drive is operated at the nominal operating speed of
200 rad/s (mechanical).

The design requirement of no steady-state error necessitates integral feedback.
Thus, a proportional plus integral (PI) controller would be appropriate. A block
diagram of this control in a system context is illustrated in Figure 14.7-1. In this
figure, the s represents the time derivative operator in Laplace notation, which is
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Figure 14.7-1 Speed control system.

typically used for control synthesis. In the time domain, the control law is of the
form

d=K (0}, —0.,) + I;{ / (W — @) dt (14.7-1)
For the purpose of design, we will make use of a linearized model of the
permanent-magnet ac motor drive, in which the system is linearized about at
operating speed of 200rad/s. The linearized model can either be calculated
using (14.6-1), or it can be calculated by automatic linearization of a nonlinear
average-value model, a feature common to many simulation languages.

Figure 14.7-2 illustrates the open-loop Bode plot of the permanent-magnet ac
motor drive, wherein the output is the mechanical rotor speed and the input is the
duty cycle. Since the Bode characteristic is based on a linearized model, strictly
speaking, it is only valid about the operating point about which it was linearized
(200rad/s). From Figure 14.7-2, we see that although the gain margin is infinite,
the phase margin is only 20°. A phase margin of 30° is often considered to be the
minimum acceptable.

The design process begins by selection of . The integral feedback will decrease
the phase by 90° at frequencies much less than 1/(2x ). Since this will decrease
the already small phase margin, it is important to pick r so that the breakpoint
frequency of the compensator is considerably less than the frequency at which the
phase of the plant begins to decrease from zero. Selecting the breakpoint frequency
of the compensator to be at 0.01 Hz yields = of 16 seconds.

The Bode characteristic of the compensated plant is depicted in Figure 14.7-3.
As can be seen, the phase margin is still 20°. The next step is to select K so as to
obtain the desired phase margin, which can be accomplished choosing the gain
such that the phase at the gain crossover frequency is —120°. From Figure 14.7-3,
it can be seen that the phase of the compensated plant is —120° when the gain of
the compensated plant is 12 dB. Thus, choosing K = 0.25 (—12 dB) will result in
the desired phase margin.

Figure 14.7-4 illustrated the Bode characteristic of the closed-loop plant. As can
be seen, the bandwidth of the system is on the order of 100 Hz, and the resonant
peak is not overly pronounced. However, the closed-loop frequency response
cannot be used as a sole judge of the systems performance since the actual system
is nonlinear. For this, the simplest approach is to use a nonlinear average-value
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Figure 14.7-2 Frequency response of the open-loop permanent-magnet ac motor drive.

model. Figure 14.7-5 illustrates the system performance during a step change in
commanded speed from 0 to 200 rad/s. As can be seen, the transient performance
in speed is quite well behaved. Nevertheless, the reader might be surprised by
Figure 14.7-5 in several ways. First, it can be seen that the duty cycle, which
is normally 0-1, is nearly 50 in the initial part of the study. Thus, the drive
will be overmodulated and we can expect the current to exhibit considerable
low-frequency harmonics on start-up (these are not apparent in Fig. 14.7-5 since
an average-value model was used). Since the applied voltage was effectively much
lower than expected, the bandwidth for this large disturbance is not nearly the
100 Hz indicated in Figure 14.7-4. Finally, the rated current for the machine in
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Figure 14.7-3 Frequency response of the compensated permanent-magnet ac motor
drive.

question is only 2.6 A, rms. Although the machine could probably withstand
the temporary overcurrent, the inverter probably could not, and thus either the
bandwidth should be reduced so as to alleviate the overcurrent or the duty cycle
should be limited as a function of the current. Finally, close inspection reveals
that at the end of the study, the speed is not 200 rad/s, and does not even appear
to be rapidly increasing. This is because the bandwidth of the compensation was
chosen to be quite low, and as a result, a small error in rotor speed will persist
for some time, although it will eventually go to zero. A second design iteration in
order to address these issues is left to the reader.
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Start-up response of the closed-loop permanent-magnet ac motor drive.
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14.8 Current-Regulated Inverter Drives

Sections 14.1-14.7 explored the performance of drives in which the machine is
controlled through suitable regulation of the applied voltages. In the remainder of
this chapter, an alternate strategy is considered—control of the machine through
the regulation of the stator currents. The hardware configuration for current-
regulated inverter drives is identical to that of voltage-source inverter drives, as
illustrated in Figure 14.2-1. The only difference is in the way in which the gate
signals to the individual semiconductors are established.

Current-regulated inverters have several distinctive features. First, since torque
is a function of the machine current, the torque may be controlled with the same
bandwidth as to which the stator currents are controlled. In fact, it is often the
case that for practical purposes, the torque control is essentially instantaneous.
A second feature of current-regulated drives is that they are robust with regard to
changes in machine parameters. For example, current-regulated drives are insen-
sitive to parameter variations in the stator leakage inductance or the stator resis-
tance. Current-regulated drives are also robust in regard to faults. In the event of a
winding-to-winding short within the machine, the currents are automatically lim-
ited, which prevents damage to the inverter. The currents are also automatically
limited during start-up.

Figure 14.8-1 illustrates the control of current-regulated drive. Therein, based
on the commanded torque T}, electrical rotor speed w,, and the inverter volt-
age vy, the g- and d-axis current commands igg and i; are formulated. Using the
inverse transformation, the corresponding abc variable current command i, is
determined. Finally, based on the abc variable current command and the actual
currents, the on and off status of each of the inverter semiconductors (T1-T6) is
determined using hysteresis modulation as set forth in Section 10.8. An immedi-
ate question that arises is how the g- and d-axis current commands are generated
to begin with; this question is addressed in detail in a following section. For the
present, it suffices to say that the command is determined in such a way that if the
commanded currents are obtained, the commanded torque will also be obtained.

=
qs

, Current > o I pes o
T Command K’ S Hysteresis T1-T6
. N K Modulator
Synthesizer [~
T T Lis T
Ve Dy i abcs

Figure 14.8-1 Hysteresis-modulated current-regulated drive control.
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Figure 14.8-2 Steady-state performance of a hysteresis-modulated current-regulated
permanent-magnet ac motor drive.

Figure 14.8-2 illustrates the steady-state performance of a hysteresis modulated
permanent-magnet ac motor drive. Therein the operating conditions are identi-
cal to those portrayed in 14.3-5 except for the modulation strategy. The g- and
d-axis current commands are set to 1.73 and 2.64 A, respectively, so that the funda-
mental component of the commanded current is identical to that in Figure 14.3-5.
As can be seen, although the modulation strategies are different, the waveforms
produced by the sine-triangle modulation and hysteresis modulation strategies are
very similar.

A second method to implement a current-regulated inverter drive is to utilize
a current-control loop on a voltage-source inverter drive. This is illustrated
in Figure 14.8-3. Therein, the current command synthesizer serves the same
function as in Figure 14.8-1. Based on the commanded g- and d-axis currents and
the measured g- and d-axis currents (determined by transforming the measured
abc variable currents), the g- and d-axis voltage commands (v’* and v’*) are
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Figure 14.8-3 A sine-triangle-modulator based current regulator.

determined. The g- and d-axis voltage command is then converted to an abc
variable voltage command vacs’ which is scaled in order to determine the instan-
taneous duty cycles d,, d;, and d, of the sine-triangle modulation strategy. Based
on these duty cycles, T1-T6 are determined as described in Section 10.5. There
are several methods of developing the current control, such as a synchronous
current regulator [6]. An example of the design of a feedback linearization-based
controller is considered in Example 14A.

Example 14A Let us consider the design of a current regulator for a nonsalient
permanent-magnet ac motor. The goal is to determine the g- and d-axis voltage
command so that the actual currents become equal to the commanded currents.
Let us attempt to accomplish this goal by specifying the voltage commands as

ik - ’ Ki oy -

Vi = o, (Lgil + 4,) + | K, + " (i0e —if) (14A-1)
I r K w1

Vis = _a)rLsslqs + Kp + 5 (lds - lds) (144-2)

where s denotes the Laplace operator. This control algorithm contains feedback
terms that cancel the nonlinearities in the stator voltage equations, feedforward
terms that cancel the effect of the back emf, and a PI control loop. Assuming
that the actual g- and d-axis voltages are equal to the commanded g- and d-axis
voltages, it can be shown that the transfer function between the commanded and
actual g-axis currents is given by
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(14A-3)

The transfer function relating the d-axis current to the commanded d-axis cur-
rent is identical. Assuming the same machine parameters as in the study illus-
trated in Figure 14.8-2, and selecting pole locations of s = —200 and s = —2000
(note that the poles may be arbitrarily placed), we have that

K, =2280Q/s (14A-4)
K,=107Q (14A-5)
0 10 ms
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Figure 14A-1 Step response of a feedforward sine-triangle-modulated
current-regulated permanent-magnet ac motor drive.
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Figure 14A-1 illustrates the response of the permanent-magnet ac drive as the
current command is stepped from zero to igg = 1.73 Aand i = 2.64 A. All operat-
ing conditions are as in Figure 14.8-2. As can be seen, the machine performance
is extremely well behaved and is dominated by the pole at s = —200.

14.9 Voltage Limitations of Current-Regulated
Inverter Drives

As alluded to previously, assuming that the current control loop is sufficiently fast,
the current-regulated drive can be thought of as an ideal current source. How-
ever, there are some limitations on the validity of this approximation. In particular,
eventually, the back emf of the machine will rise to the point where the inverter
cannot achieve the current command due to the fact that the back emf of the
machine becomes too large. Under such conditions, the machine is said to have
lost current tracking.

In order to estimate the operating region over which current tracking is
obtained, consider the case in which current tracking is obtained, that is

~r

i =10 (14.9-1)
By =1 (14.9-2)

Substitution of (14.9-1) and (14.9-2) into the stator voltage equations and neglect-
ing the stator dynamics

0 = rilog + o, Lyly + 0,2, (14.9-3)
AF ~r A
Vs = Fslas — @, Lgly (14.9-4)

Recall that the rms value of the fundamental component of the applied voltage is
given by

v, = é (05,)° + (0) (14.9-5)

Substitution of (14.9-3) and (14.9-4) into (14.9-5) yields

v, = i\/(rsi{;; + o, Lyl + Mw,) + (rirs — o, L) (14.9-6)

— rE __
s \/5 ds — Yrtgtes
Recall from Section 10.8 that for the hysteresis-controlled current-regulated
inverters, the maximum rms value of the fundamental component of the applied
voltage that can be obtained without low-frequency harmonics is given by

v = 29, (14.9-7)

S Ve
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If low-frequency harmonics are tolerable, and a synchronous regulator is used,
then the maximum RMS value of the fundamental component becomes
V2

v.=—9P 14.9-8
T de ( )

N

In the event that for a given current command and speed (14.9-8) cannot be sat-
isfied, then it is not possible to obtain stator currents equal to the commanded
current. If (14.9-8) can be satisfied, but (14.9-7) cannot be satisfied, then it is pos-
sible to obtain stator current that have the same fundamental component as the
commanded currents provided that integral feedback in the rotor reference frame
is present to drive the current error to zero; however, low-frequency harmonics
will be present.

Figure 14.9-1 illustrates the effects of loss of current tracking. Initially, oper-
ating conditions are identical to those portrayed in Figure 14.8-2. However,

10 ms

Nm " e

e’

Figure 14.9-1 Response of hysteresis-modulated current-regulated permanent-magnet
ac motor drive to step decrease in dc inverter voltage.
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approximately 20 ms into the study, the dc inverter voltage is stepped from
177 to 124 V, which results in a loss of current tracking. As can be seen, the
switching of the hysteresis modulator is such that some compensation takes
place; nevertheless, current tracking is lost. As a result, harmonics appear in the
a-phase and g- and d-axis current waveforms, as well as in the electromagnetic
torque.

14.10 Current Command Synthesis

It is now appropriate to address the question as to how to determine the current
command. Normally, when using a current-regulated inverter, the input to the
controller is a torque command. Thus, the problem may be reformulated as the
determination of the current command from the torque command. To answer this
question, let us first consider a nonsalient machine in which L, £ L, =L, In this
case, torque may be expressed as

3P, .

Therefore, the commanded g-axis current may be expressed in terms of the com-
manded torque as

. 221
lg = g 1—) E T: (1410'2)

Clearly, if the desired torque is to be obtained, then (14.10-2) must be satisfied.
The d-axis current does not effect average torque, and so its selection is somewhat
arbitrary. Since d-axis current does not affect the electromagnetic torque, but does
result in additional stator losses, the d-axis current is often selected to be zero,

that is,
=0 (14.10-3)

This selection of d-axis current minimizes the current amplitude into the machine,
thus maximizing torque per amp, and at the same time maximizes the efficiency
of the machine by minimizing the stator resistive losses.

Although (14.10-3) has several distinct advantages, there is one reason to
command a nonzero d-axis current. To see this, consider (14.9-6) for the
nonsalient case:

v, = L\/ (il + @, Ly + Ao, ) + (1 = oo, Lir*)’ (14.10-4)

s‘qs rsstds
V2
From (14.10-4), we see that the required inverter voltage goes up with either
speed or g-axis current (which is proportional to torque). However, examining the
first squared term in (14.10-4), it can be seen that at positive speeds, the required
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inverter voltage can be reduced by injecting negative d-axis current. In fact, by
solving (14.10-4) for d-axis current in terms of the g-axis current command and
speed, we have that

sk

ds

)
-l Low? + \/2z2v§ — (ryw, Ay, + 22i0%)
_ (14.10-5)
<

where

z=1\/r} + orL (14.10-6)

Thus, a logical current control strategy is to command zero d-axis current as long
as the inverter voltage requirements are not exceeded, and to inject the amount
of d-axis current specified by (14.10-5) if they are. Note that there are limitations on
d-axis current injection in that (1) (14.10-5) may not have a solution, (2) excessive
d-axis current injection may result in demagnetization of the permanent mag-
net, and (3) excessive d-axis current injection can result in exceeding the current
limit of the machine or inverter. In addition, the use of (14.10-5) requires accurate
knowledge of the dc inverter voltage (to determine the peak v,), the rotor speed,
and all of the machine parameters. A means of implementing such a control with-
out knowledge of the dc inverter voltage, speed, and machine parameters is set
forth in Reference [7].

The process for determining the current command in salient machines, which
typically are constructed using buried magnet technology, is somewhat more
involved than in the nonsalient case. Let us first consider the problem of com-
puting the g- and d-axis current commands so as to maximize torque-per-amp
performance. In the case of the nonsalient machine, from Chapter 4, the
expression for electromagnetic torque is given by
To= 22 Aty + (L~ Ligly) (14.10-7)

e m'qs

Solving (14.10-7) for d-axis current command in terms of the g-axis current com-
mand and in terms of the commanded torque yields

4T, A
i = - % -— (14.10-8)
3P(Ly— L) ify Lg—1L,

In terms of the gd commanded currents, the rms value of the fundamental com-
ponent of the commanded current is given by

= —=\/(i)" + (i) (14.10-9)

s qs

V2
Substitution of (14.10-8) into (14.10-9) yields an expression for the magnitude of
the stator current in terms of the commanded torque and g-axis current. Setting the
derivative of the resulting expression with respect to the g-axis current command
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equal to zero gives the following transcendental expression for the g-axis current
command that maximizes torque per amp:

2

4T, A i 4T

(i) ——E ¢ =0 (14.10-10)
e 3P(Ly—L)? \3PLy-L,

Once the g-axis current command is determined by solving (14.10-10), the
d-axis current command may be found by solving (14.10-8). From the form
of (14.10-10), it is apparent that the solution of for the g-axis current must be
accomplished numerically. For this reason, when implementing this control
with a microprocessor, the g- and d-axis current commands are often formulated
through a look-up table that has been constructed through offline solution to
(14.10-8) and (14.10-10).

Once the g- and d-axis current commands have been formulated, it is necessary
to check whether or not the inverter is capable of producing the required voltage.
Ifitis not, it is necessary to recalculate the commanded g- and d-axis currents such
that the required inverter voltage does not exceed that obtainable by the converter.
This calculation can be conducted by solving (14.9-6) and (14.10-8) simultaneously
for the g- and d-axis current command.

Figure 14.10-1 illustrates the graphical interpretation of the selection of the com-
manded g- and d-axis currents for a machine in which r = 0.2 Q, Lq = 20 mH,

i qz,, A
0 2 4 6 8 10
0 . ; : : .
27 Voltage
Maximum Torque (SL(I)iT(T)li\t/)
Per Amp .
4}
Point A —
.7
i /a— Point B
6t
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8t
Loci of Points of
Constant Torque
(5 Nm)
10t

Figure 14.10-1 Selection of g- and d-axis currents.
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L, =10 mH, and 4}, = 0.07 Vs. The machine is operating at a speed of 500 rad/s
(electrical) and v, = 50 V. Illustrated therein are the trajectory of the maximum
torque-per-amp characteristic, the loci of points in the gd plane at which the elec-
tromagnetic torque of 5 Nm is obtained, and the loci of points representing the volt-
age limit imposed by (14.10-4). For a given electromagnetic torque command, the
g- and d-axis current command is formulated using the maximum torque-per-amp
trajectory, provided this point is inside the voltage limit. However, g- and d-axis
currents on this trajectory corresponding to torques greater than that obtainable
at Point A cannot be achieved. Suppose a torque of 5 Nm is desired. Point B repre-
sents the point on the maximum torque-per-amp trajectory, which has the desired
torque. Unfortunately, Point B is well outside of the limit imposed by the available
voltage. However, any point on the constant torque locus will satisfy the desired
torque. Thus, in this case, the current command is chosen to correspond to Point C.

14.11 Average-Value Modeling of Current-Regulated
Inverter Drives

In this section, an average-value model of the current-regulated inverter drive is
formulated in much the same way as the average-value model of the voltage-source
inverter drive. Since the topology of the rectifier and inverter are the same, it fol-
lows that the expressions for the time derivatives of the rectifier current, the dc
link voltage, the stabilizing filter current, and the stabilizing filter voltage given
by (14.4-7) and (14.4-10)-(14.4-12) are valid. Furthermore, the change in control
strategy does not affect the mechanical dynamics, thus (14.4-19) and (14.4-20) may
still be used to represent the machine. However, the change in control strategy
will change the formulation of the expression for the dc link currents, the stator
dynamics, and the expression for electromagnetic torque.

In order to formulate an expression for the dc link current, it is convenient to
assume that the actual machine currents are equal to the commanded machine
currents, whereupon

~r

Iy =i (14.11-1)
By =i (14.11-2)

Of course, this assumption is only valid when the dc link voltage is such that
the desired current is actually obtained. An average-value model of a permanent-
magnet ac motor drive in which current tracking is not obtained is set forth in
Reference [8]. Assuming that the actual currents are equal to the commanded
currents, the stator currents are no longer state variables. Neglecting the stator
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dynamics, the g- and d-axis voltages may be expressed as

Dgs = slgs + @, Lyl + Ay (14.11-3)

Dy = Tl — @, Lglg (14.11-4)
The instantaneous power into the machine is given by

P= % [rs(ig; +i7) + oLy - L Dol + @, Ay gs] (14.11-5)

Assuming that no power is lost into the inverter, it follows that the dc link current
is given by

lge = ﬁi (14.11-6)
de
Combining (14.11-5) with (14.11-6) yields
~ 31 P ) 2 S Pk o
=35 [rs(zgs + 1) 4 0, (Ly = LA + @, 2L ;S] (14.11-7)
C

The other expression affected by the change from a voltage-source inverter to
a current-regulated inverter will be the expression for torque. In particular, from
(14.4-17) and again assuming that the actual stator currents are equal to the com-
manded currents

T = (/1/ r*+(Ld_L )lr* r*)

e m'qs qs”ds

(14.11-8)

As can be seen from (14.11-8), if it is assumed that the actual currents are equal
to the commanded currents, then any desired torque may be instantaneously
obtained.

Combining (14.4-7), (14.4-10)-(14.4-12), (14.4-19), (14.11-7), and (14.11-8)
yields

rl 1
-— —= 0 0 0
A Lrl Lrl A
l
" 1 o L ¢ oflr
‘idc Cdc 1 Cae ‘idc
Plig (=] 0o — —% _LL 0] b
D, Ly 151 st D,
o, 0 0 C_St 0 0 o,
0 0 0 0 0

427



428

14 Permanent-Magnet AC Motor Drives

L3 5 Lrl
LS () oL - Ll + o Aot
+ de de
0
0
P1[3P rs jrerE
LI G (- Lity) - T3]
(14.11-9)

14.12 Case Study: Current-Regulated Inverter-Based
Speed Controller

The control of current-regulated inverter drives is considerably simpler than for
their voltage-source-based counterparts, due to the fact that when designing
the speed or position control algorithms, the inverter and machine act as a
nearly ideal torque transducer (neglecting the stator dynamics of the machine).
To illustrate this, let us reconsider the speed control system discussed in
Section 14.7. Assuming that a current command synthesizer and current regula-
tor can be designed with sufficiently high bandwidth, the speed control algorithm
may be designed by assuming that the drive will produce an electromagnetic
torque equal to the desired torque, therefore

T,=T: (14.12-1)

In order to ensure that there will be no steady-state error, let us consider a PI
control law in accordance with
T = K, (1 + g> (s = ) (14.12-2)
wherein w,, represents the speed command. Combining (14.12-1), (14.12-2), and
the inertial mechanical dynamics of the drive, it can be shown that the resulting
transfer function between the actual and commanded rotor speed is given by

®,,  K(zs+1)
wt,  Jrs? +Krs+K

(14.12-3)

Since (14.12-3) is a second-order system and there are two free parameters, the
poles of (14.12-3) may be arbitrarily placed. However, some restraint should be
exercised since it is important that the current regulator be much faster than the
mechanical system if (14.12-1) and hence (14.12-3) are valid. Placing the poles at
s =-5and s = —50 yields K = 0.257 N m s/rad and = = 0.22 second. The pole at
s = —5 will dominate the response.
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In order to complete the design, a current command synthesizer (to determine
what the current command should be to achieve the desired torque) and a current
regulation control strategy need be designed. For this example, let us assume a
simple current command synthesizer in which all of the current is injected into
the g-axis, and let us use the sine-triangle-modulated voltage-source inverter based
current regulator set forth in Example 14A as a current regulator. Recall that the
poles of the current regulator are at s = —200 and s = —1000, which are much faster
than those of the mechanical system.

Practically speaking, there are two important refinements that can be made to
this control system. First, the g-axis current command generated by the current
command synthesizer should be limited to +3.68 A in order to limit the current to
the rated value of the machine. However, limiting the g-axis current command
may cause the integrator in the speed control to wind up. For this reason, the
contribution of the K/(zs) portion of the speed control (that is the integral por-
tion of the control) should be limited to avoid excessive windup. Herein, the por-
tion of the torque command contributed by the integral term will be limited to
0.861 Nm, which is 50% of the torque, which would be obtained if the g-axis current
command is at its maximum value. This value is obtained so that the overshoot
for worst-case conditions is limited to an acceptable value (some iteration using
time-domain simulations would be used to determine the exact number).

Figure 14.12-1 illustrates the interactions of the various controllers. Based on
the speed error, the PI speed control determines a torque command T (the limit
on the integral feedback is not shown). Then the current command synthesizer
determines the g-axis current required to obtain the desired torque, subject to the
g-axis current limit. In this controller, the d-axis current is set to zero. Based on the
commanded g- and d-axis currents, the electrical rotor speed, the actual currents,
and the dc supply voltage, the current regulator determines the on or off status of
each of the semiconductors in the inverter (T1-T6).

Figure 14.12-2 illustrates the performance of the speed control system. Initially,
the system is in the steady state. However, 50 ms into the study, the speed
command is stepped from 0 to 200 rad/s. As can be seen, the torque command
immediately jumps to the value that corresponds to the maximum g-axis current
command. Since the electromagnetic torque is constant, the speed increases
linearly with time. As can be seen, the magnitude of the ac current into the
rectifier and the dc rectifier current both increase linearly with speed. This is due
to the fact that the power going into the machine increases linearly with speed.
The increasing rectifier current results in a dc link voltage that decreases linearly
with time. Note that the dc link voltage initially undergoes a sudden dip of 5V
since the rectifier was initially under no-load condition, and hence it charged the
dc link capacitor to peak rather than the average value of the rectifier voltage.
Eventually, the machine reaches the desired speed. At this point, the torque
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Figure 14.12-1 Current-regulated-inverter based speed control.

Figure 14.12-2 Start-up response of current-regulated-inverter based speed control
system.

command falls off since the load is inertial. As a result, the electromagnetic
torque, stator current, and rectifier current all decrease to their original values,
and the dc link voltage increases to its original value.

Comparing Figure 14.12-2 with Figure 14.7-5, the reader will observe that
the current-regulated inverter based speed control system is considerably more
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sluggish than the voltage-source inverter based speed control system. However,
this is a result the fact that the machine currents in the current-regulated inverter
based system did not exceed the current limits of the machine. In fact, the
current-regulated inverter based system brought the machine to speed as fast as
possible subject to the limitation of the stator current.
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Problems

14.1 Consider the permanent-magnet ac motor drive whose characteristics are
depicted in Figure 14.5-1. Plot the characteristics if ¢, = atan(w,Lg/r,).
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14.2

14.3

14.4

14.5

14.6

14.7

14.8

14.9

14.10

Consider the drive system whose parameters are given in Table 14.7-1.
If ¢, = 0, compute the turns ratio of the transformer with the minimum
secondary voltage which would be required if the drive is to supply a
1.72 N-m load at a mechanical rotor speed of 200rad/s. Assume that
the primary of the transformer is connected to a 230 V source (rms,
line-to-line) and that the effective series leakage reactance will be 0.05
pu. Further assume that the VA rating of the transformer is 1.5 times the
mechanical output power.

Consider the speed control system considered in Section 14.8. Plot the
closed-loop frequency response of the system about a nominal operating
speed of 20 rad/s (mechanical).

Consider the speed-control system considered in Section 14.8. Estimate
the bandwidth of the closed-loop plant that could be designed if the cur-
rent is to be restricted to the rated value of 2.6 A, rms.

Assuming that the drive discussed in Example 14A is operating at an elec-
trical rotor speed of 200 rad/s, compute the pole locations if the linearizing
feedback terms are not used in making up the command voltages.

Consider a current-regulated buried permanent-magnet ac motor drive in
which stator resistances is negligible. Sketch the locus of obtainable g- and
d-axis currents in terms of the maximum fundamental component of the
applied voltage, the electrical rotor speed, the g- and d-axis inductances,
and A7,.

A four-pole permanent-magnet ac motor drive has the following param-
eters: 1, = 0.3 Q, L, =20 mH, and 4], = 0.2V-s. The machine is to deliver
10 N-m at a mechanical rotor speed of 200 rad/s. Compute the g- and
d-axis current commands such that the power factor is maximized. What
is the rms voltage and current applied to the machine, and what is the
efficiency?

Repeat Problem 7, except choose the current command so as to minimize
the required dc voltage.

Repeat Problem 7, except choose the current command so as to minimize
the commanded current.

Compute the locations of Points A, B, and C on Figure 14.10-1.
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Abbreviations, Constants, Conversions, and Identities

Term Abbreviation Term Abbreviation
alternating current AC megawatt MW
ampere A meter m
ampere-turn At microfarad uF
coulomb C millihenry mH
direct current DC newton N
electromotive force emf newton meter N-m
foot ft oersted Oe
gauss pound Ib
gram g poundal pdl
henry H power factor pf
hertz Hz pulse-width modulation PWM
horsepower hp radian rad
inch in revolution per minute  r/min (rpm)
joule J root mean square rms
kilogram kg second S
kilovar kvar voltampere reactive var
kilovolt kv volt v
kilovoltampere kVA voltampere VA
kilowatt kW watt w
magnetomotive force mmf weber Wb
maxwell Mx
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Constants and Conversion Factors

permeability of free space Ho =47 X 1077 Wb/A - m
permittivity of free space £y =8.854 x 10712 C2/N - m?
acceleration of gravity £=9.807m/s?

length 1m =3.281ft=39.37in

mass 1kg = 0.0685 slug = 2.205 Ib (mass)
force 1N =0.225lb=3.60z

torque 1IN -m=0.7381b - ft

energy 1J(W-s)=0.7381b - ft

power 1W=1.341x10"% hp

moment of inertia 1kg - m? =0.738 slug - ft? = 23.71b - ft?
magnetic flux 1 Wb = 10® Mx (lines)

magnetic flux density 1 Wb/m? = 10,000 G = 64.5 klines/in?
magnetizing force 1 At/m = 0.0254 At/in = 0.0126 Oe

Trigonometric Identities

(I-1)
(I-2)
(I-3)
(I-4)
(I-5)
(I-6)
(I-7)
(I-8)
(I-9)
(1-10)
(I-11)

(1-12)

(I-13)

@ = cos a +jsin a

acosx+bsinx = Va?+b? cos(x+¢) ¢ =tan"'(=b/a)
cos?x +sin’x =1

sin 2x = 2 sin x cos x

cos 2x = cos’x — sin?x =2 cos’x —1=1—2 sin’x

COSX COSy = %cos(x+y)+%cos(x—y)

sinx siny = 1 cos(x—y) — %cos(x +y)

N

sinx cosy = Esin(x+y) + %sin(x—y)

cos(x+y)= cosxcosyF sinxsiny
sin(x+y)= sinxcosy+ cosxsiny

cos?x 4 cos? (x— %ﬂ') + cos? <x+ %ﬂ') = %

. . 2 . 2
sin?x + sin? <x— 571) + sin® (x+ 57:) = %

sinx cosx + sin (x - %7[) cos <x— %ﬂ') + sin <x+ %7‘[) cos <x+ %) =0



(I-14)

(1-15)

(1-16)

(1-17)

(1-18)

(1-19)

(1-20)

(1-21)

(1-22)

(1-23)

Appendix A Abbreviations, Constants, Conversions, and Identities

COSX + Cos (x— %7:) + cos <x+ %71’) =0

sin x + sin (x— %n’) + sin (x+ %7[) =0

sin xcosy + sin (x - %7[) cos (y - %n’) +sin (x+ %7[) cos <y+ %7:)
= %sin(x—y)

sinx siny + sin (x— %7:) sin (y— %71’) + sin <x+ %7:) sin <y+ §7l'>
= % cos(x —Yy)

cosx siny + cos (x - %7[) sin (y— %n’) + cos (x+ %ﬂ') sin <y+ 27:)
= %sin(x—y)

COSX COSY + cOos (x— %77.’) cos <y - 27[) + cos <x+ %77,’) cos <y+ %7[)
= —% cos(x—y)

sinx cosy + sin <x+ %7[) cos (y— %n’) +sin (x - %7[) cos <y+ §7r>
= %sin(x+y)

sinx siny + sin <x+ 27[) sin (y— %71’) + sin (x— 271') sin <y+ %71’)
= —% cos(x+Yy)

cosx siny + cos (x+ %n) sin (y— %n’) + cos (x— %ﬂ') sin <y+ 271')
= %sin(x+y)

COSX COSY + COS <x+ §n> cos (y— %71') + cos (x— 2”) cos <y+ %7:)

= %cos(x +y)
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Phasors and Phasor Diagrams

The concept of the phasor is quite convenient in the analysis of balanced
steady-state operation of AC electromechanical devices. Therefore, it is important
to be familiar with phasor theory. For this purpose, let a steady-state sinusoidal
variable be expressed as

F, = \/2F cos O, (B-1)

where capital letters are used to denote steady-state quantities and F is the rms
value of the sinusoidal variation. In the text, the subscript s or r is added to denote
variables associated with the stator or rotor, respectively. In (B-1),

t
0= /0 0, (&) d& +6,4(0) (B-2)

where w, is the electrical angular velocity and £ is a dummy variable of integration.
For steady-state conditions, (B-2) may be written as

0,5 = w,t + 6,6(0) (B-3)
Substituting (B-3) into (B-1) yields
F, = V2F cos [,t + 0,:(0)] (B-4)
We know that
e/ = cosa +jsina (B-5)

Thus, (B-4) may also be written as
F,=Re [\/EFej[“’f”eff(O)]] (B-6)

where Re is shorthand for the “real part of.” Equations (B-4) and (B-6) are
identical. We can rewrite (B-6) as

F, =Re [\/EFef‘)af “”efwef] (B-7)
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By definition, the phasor representing F, is
F, = Fel%© (B-8)
which is a complex number. Equation (B-7) may now be written as
F, =Re [\/Eﬁaefwe‘] (B-9)
A shorthand notation for (B-8) is
F,=F /0,,(0) (B-10)

Equation (B-10) is commonly referred to as the polar form of the phasor.
The cartesian form is

F, = Fcos 0,/(0) + jFsin 0,,(0) (B-11)

When using phasors to calculate steady-state voltages and currents, we think of
the phasors as being stationary at t = 0. On the other hand, a phasor is related to the
instantaneous value of the sinusoidal quantity it represents. Let us take a moment
to consider this aspect of the phasor and, thereby, give some physical meaning to

it. We know that
e/”! = cos w,t + jsin w,t (B-12)

is a constant-amplitude line of unity length rotating counterclockwise at an angu-
lar velocity of @,. Now,

V2F, eiodt = \[2Fel% et
— \/EFej[weHﬂef(O)]
= V2F{cos [@,t + 0,0(0)] + jsin [, + 0,0(0)]) (B-13)

is a constant-amplitude line \/EF in length rotating counterclockwise at an angu-
lar velocity of w, with a time zero displacement from the positive real axis of 6,,(0).
The instantaneous value of F,, is the real part of (B-13). In other words, the real
projection of the phasor Fa is the instantaneous value of (1/ \/E)Fa at time zero.
As time progresses, F, rotates at @, in the counterclockwise direction, and its
real projection, in accordance with (B-9), is the instantaneous value of (1/ \/E)Fa.
Thus, for

F, = \/2F cos w,t (B-14)
the phasor representing F, is

F,=Fel®=F/0° =F +j0 (B-15)
For

F, = \/2F cos (a)et + %n> (B-16)
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the phasor is

F, = Fe’™/% = F /30° = F(0.866 + j0.5) (B-17)
Finally, for

F, = V2Fsinw,t (B-18)
the phasor is

F, = Fe 7"/ = F/-90° = 0 — jF (B-19)

Although there are several ways to arrive at (B-19) from (B-18), Is it helpful to ask
yourself where must the rotating phasor be positioned at time zero so that, when
it rotates counterclockwise at w,, its real projection is (1/ \/E)F sin w,t? Is it clear
that a phasor of amplitude F positioned at %zr would represent —\/EF sin w,t?

It is often instructive to be able to construct a phasor diagram. For example, let
us consider a voltage equation of the form

V=@+jX)I+E (B-20)

where r is the resistance and X is the reactance. In most cases, we will deal with
an inductive reactance; however, in a series LC circuit,
-1

,C

where L is the inductance and C is the capacitance. The inductive reactance is X,
and X is the capacitive reactance. Let us assume that V and T are known and that
we are to calculate E. The phasor diagram may be used as a rough check on these
calculations. Let us construct this phasor diagram by assuming that X is equal to
X, (or X, 1> 1Xl)and V and T are known as shown in Figure B-1. Solving (B-20)
for E yields

X=X, +X.=w,L+

(B-21)

E=V-@+jXI (B-22)

To perform this graphically, start at the origin in Fig. B-1 and walk to the ter-
minus of V. Now, we want to subtract rI. To achieve the proper orientation to do
this, stand at the terminus of 17, turn, and look in the T direction which is at the
angle ¢. But we must subtract rT; hence, —T is 180° from 7, so do an about face
and now we are headed in the —T direction which is ¢ — 180°. Start walking in
the direction of —1 for the distance r[I| and then stop. While still facing in the —1
direction, let us consider the next term. We must subtract jXT, so let us face in the
direction of —jXI. We are still looking in the —I direction, so we need only to j our-
selves. Thus, we must rotate 90° in the counterclockwise direction, whereupon we
are standing at the end of V — rI looking in the direction of ¢ — 180° + 90°. Start
walking in this direction for the distance of X|I|, whereupon we are at the termi-
nus of V — rI — jXI. According to (B-22), E is the phasor drawn from the origin of

439



440 | Appendix B Phasors and Phasor Diagrams

~1

i X

Y/

—jXxT

Figure B-1 Phasor diagram for (B-22).

the phasor diagram to where we are. Note that in Fig. B-1 —ZI is —(r + jX)I, where
Z is the impedance.
The average steady-state power may be calculated by using phasors,

P = |V|[T| cos ¢, (B-23)
where the power is in watts and the so-called power factor angle is defined as
¢pr = 0,,(0) — 6,;(0) (B-24)

Here, V and T are phasors with the positive direction of T taken in the direction of
the voltage drop and 6,,(0) and 6,,(0) are the phase angles of V and I, respectively.
The reactive power is defined as

Q = V[T sin ¢, (B-25)

The units of Q are in var (voltampere reactive). An inductance is said to absorb
reactive power and thus, by definition, Q is positive for an inductor and negative for
acapacitor. Actually, Q is a measure of the exchange of energy stored in the electric
(capacitor) and magnetic (inductance) fields; however, there is no average power
interchanged between these energy storage devices.



Index

a
abc variables
base voltage 78,137
current command 296, 417, 418
exponential decay 59
hysteresis and delta modulation
296
permanent-magnet ac motor drives
299
per unit system 78-81, 137
gs and ds variables 97
stator currents 193,417
total instantaneous power 49, 78, 97,
417
transformation 50, 73,192, 296, 417
voltage command 418, 419
zero variables 45
Achievable, voltage vectors 380, 381
Ac machines. see Alternating current
(ac) machines
Air gap, ac machines 37-41, 111
Air-gap flux linkage 353, 358, 376, 379
Air-gap magnetomotive force (mmf). see
also Poles
distributed windings in 38, 40
rotating poles 45, 46, 51, 306
stator currents 43, 68
a-phase current 251, 254, 269, 277, 289,
290, 358, 394
a-phase duty cycle 278, 282

a-phase voltage 191, 269, 271, 352,
393
Alternating current (ac) machines
distributed windings in

air-gap magnetomotive force (mmf)
37-38

conductor distributions 38

developed diagram 38, 39

flux linkage and inductance 10,
126, 304

induction machines

overview of 110

position measurements
136, 389, 392

problems 63-64

resistance 110, 304, 334

rotating mmf 68

stator voltage equations

synchronous machines
304

permanent-magnet ac machine

109-111, 117, 126, 136, 140,
259, 260, 265, 267, 299, 303,
305, 322, 331, 333, 334, 339,
389, 392

as brushless dc motor

overview of 109

phase-shifting of applied voltages
121

problems

37,66, 67,128

110, 117,
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117-125
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Alternating current (ac) machines
(contd.)
rotor reference frame variables,
voltage and torque 113-116
stator current control 121, 128,
130, 260, 322, 323, 325, 326,
345, 348, 404
steady-state operation 110, 117,
121, 126, 140, 208, 322, 323,
331, 340, 390, 394, 396, 398,
404, 405, 411, 418
variables, voltage and torque
equations 113-116
Ampere’s law  38-40
Angular displacement
rotational system 26
as rotor angle 136
steady-state operation 138-143
symmetrical induction machines
65-107
synchronous reference frame
transformation, rotor circuits
two-pole vs. four-pole 51, 52
Angular position
dc machines 245
distributed windings
65-67, 128
Hall effect position 393
sine-triangle modulated inverter
speed voltage 76, 166, 333
synchronously rotating reference
frame 53
three-phase load commutated
converter 245-256
transformation, change of variables
53,393
Angular velocity
electrical 51, 75, 80,97, 117,118, 136,
138, 221, 328
induction motor drives
Park’s equations 178
permanent-magnet ac machines
117
reference frames 53, 59
symmetrical induction machines
80

294
136

38, 40, 41,

396

351-388

synchronous machines
transformation 45, 53
Arbitrary reference frame
balanced steady-state phasor relations
46, 53-55, 164, 182
computer simulation 77-78, 127
symmetrical induction machines
65,70, 72, 74, 77, 106
electric transients, neglecting
163-166, 170, 175
free acceleration characteristics
166-170
stationary circuit variables 72
stator voltage equations 72, 160, 166,
170
subscripts 72
torque equation 127, 160
transformation 44, 49, 53, 67-70, 72,
75, 106, 112, 160, 249
transformation, balanced set
59
two-phase transformation 45, 53, 58,
74,106, 192, 193
voltage equations 46-49, 58, 72, 74,
106, 163-166, 170, 175
symmetrical induction machines
65, 67-70, 72,74, 77, 106
Armature terminal voltage 314, 316
Armature windings 309-311
dc machine, elementary two-pole 42,
68
Average-value analysis
dynamic vs. actual response
400, 401
permanent magnet ac motor drives
current-regulated inverters
417-423
voltage-source inverters 400-403
six-stepped three-phase bridge
operation 265
three-phase load commutated
converter 245-256
Average-valuing. see Average-value
analysis

138, 221

53, 58,
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Back emf 228, 245, 263, 265, 267, 302,
306, 389, 396, 406, 419, 421
Back voltage 112, 306, 309
Balanced set transformation 52-56, 58,
59,139, 192
Balanced steady-state phasor relations
56
Base torque 80, 89, 97, 103, 137, 388
B-H curve 9
Block diagrams
average-value time-domain 316-317
computer simulation 12
dc machine, speed control 116
elementary electromechanical system
13

induction motor drives 354, 379, 384,

388
permanent-magnet ac motor drives
389
semi-controlled bridge converters
255
slip energy recovery drives 383-386
slip energy recovery drive system
384
time-domain 12, 78, 79, 116,
133-136, 316-317, 333, 334
Blocked-rotor test 82, 84
Bode characteristic 413
Bridge control strategies
delta modulation 292-293
hysteresis modulation 289-292
sine-triangle modulation 278-283
space-vector modulation 285-289
Bridge converters. see Semi-controlled
bridge converters; Three-phase
bridge converters
Brushless dc motor
dynamic performance of 390,
406-411
free-acceleration characteristics
118
torque-speed characteristics 220
Bus voltage 384

Index

c
Canay, I. M. 201
Circuits
coupled circuits 1, 34, 165, 222
dc machine, elementary two-pole 42,
68
magnetically coupled 1-12
Park’s transformation 225
rotor circuits
eigenvalues 221, 222
equations of transformation for
73,106
free acceleration characteristics 95
input impedance of 179, 200
reference frame theory 222
short-circuited 367
symmetrical induction machines
68, 94
semi-controlled bridge converters
238
stationary circuits
magnetically coupled circuits 1
reference frame theory 37, 44, 208,
222,269
stator circuits
induction machine 72
machine equations, alternative
forms 165,177,178, 188, 200,
208, 222
subscript for 72
time constants, standard 184, 185
three-phase bridge converters 262,
263
three-phase synchronous machine
131, 145, 178
transformation, reference frames 44,
49-51, 59, 61, 97
two damper windings in quadrature
axis 178-180, 223
Closed-loop permanent-magnet ac motor
drive 416
Closed-loop voltage and current
regulation 296-300
Coenergy 19-21
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Coils. see also Windings
defined 40
distributed windings
resistance 34

Coil-wound rotor windings 87

Commutator and commutation
dc machines 311
semi-controlled bridge converters

306-309
three-phase load commutated
converter 245-256

Computer simulation
brushless dc motor 390
permanent magnet ac motor drives

390
symmetrical induction machines 77
arbitrary reference frame 65, 67,
70,72, 74,77, 106
free acceleration, in reference
frames 97-101
load torque changes 104
synchronous machines
rotor reference frame 128, 133,
158, 163, 170, 182, 208, 209,
214, 215, 227
three-phase fault 153,173, 221
torque input changes 143
Condition modulation index command
287,289

Constant slip current control

Converter angle, defined 265

Converters. see also Inverters;

Three-phase bridge converters
brushless dc motors 389, 390, 392
current-controlled dc/dc converter

311
dc drives, solid-state converters 88
inverter (see also Inverter)
permanent-magnet ac motor drives

389-391, 401
semi-controlled bridge converters (see

Semi-controlled bridge

converters)

38, 40

358-365

single-phase load commutated
converter 233-244
three-phase bridge converters
259-265
three-phase load commutated
converter 245-256
two-quadrant dc/dc converter drive
313, 315-317
voltage-controlled dc/dc converter
313
Counter emf 314-316
Coupled circuits
inductive circuit elements 165
magnetic
linear magnetic system 20
nonlinear magnetic system 8-12
synchronous machines 222, 223
Coupling fields
block diagram of 13
electromechanical energy conversion
13-17, 19, 20, 22
energy in 18-24
energy relationships 13-18
energy stored in 14, 18, 19, 21, 23
force equation 31, 32
Critical clearing time 173
Current command synthesis,
permanent-magnet ac motor
drives 423-426
Current-controlled dc/dc converter 311
Current control operation, fixed-slip
frequency 358
Currents. see also Stators
dc machine, elementary two-pole 42,
68
permanent-magnet ac machines 117,
259, 260, 299, 305, 322, 325,
327, 331, 335, 389
symmetrical induction machines 78,
82, 84,90, 96
synchronous machines 128-130,
137,138, 141-143, 160, 170,
178, 215, 222



three-phase bridge converters
259-261, 263, 264, 270, 272,
282, 290, 292, 294, 296, 298,
300, 304, 389
three-phase load commutated
converter 245, 249, 251, 255
Current-source modulation strategy
delta modulation 292-293
hysteresis modulation (see also
Hysteresis modulation)
permanent-magnet ac motor drives
259
average-value analysis 400-403
current command synthesis
423-426
features 109, 389, 407, 413
speed control study 394, 411, 413,
415
voltage limitations 421-423
Current tracking 292, 421-423, 426

d
Damper windings 119, 127-130, 138,
143, 148, 151, 159, 177-181,
184, 196, 201, 205, 213,
222-224, 228, 229
Dc/dc converters 317
Dc machines. see Direct current (dc)
machines
Delta modulation 292-293, 296, 358
Demagnetization 424
Direct current (dc) machines
block diagrams, time-domain 12, 78,
79, 116, 133-136
permanent magnet 317
equivalent circuit of 309
machine control
current-controlled 418
voltage-controlled 305
operating characteristics
overview of 305
problems 319-320
two-quadrant dc/dc converter drive
313, 315-317

305

Index

uniformly distributed rotor windings
63
voltage and torque equations
309-311
Direct field-oriented control, induction
motor drives 369-371
Direct torque control (DTC), induction
motor drives 379-383
Distributed windings, ac machinery
air-gap mmf 37-41
conductor distributions 38
developed diagram 38, 39
flux linkage and inductance 70-75
induction machines 110, 265, 305
overview of 38
permanent-magnet ac machines

110
problems 63
resistance 128

rotating mmf 45
synchronous machines
Doherty, RH. 184
Drive motors
brushless dc motor (see Brushless dc
motor)
direct current machines as (see Direct
current (dc) machines)
induction motor drives (see Induction
motor drives)
permanent-magnet ac motor drives
(See Permanent-magnet ac
motor drives)
two-quadrant dc/dc converter drive
313, 315-317
Duty cycles
open-loop voltage-regulated converter
293
permanent-magnet ac motor drives
398, 407, 410-415
sine-triangle modulation 277, 278,
281, 283, 284, 293, 295, 395,
397, 398
Dynamic-average rectifier voltage
400

128-130
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Dynamic averaging process
open-loop voltage-regulated converter
293
other terms for 250
permanent-magnet ac motor drives
392,401
sine-triangle modulation 278, 280,
281, 284, 293, 398, 399
space-vector modulation 285, 293,
398, 399
three-phase load commutated
converter 251, 255
Dynamic performance
brushless dc motor 390
electromechanical systems 27-32
permanent-magnet ac motor drives
390
symmetrical induction machines
102-104
free acceleration 89-101
load torque changes 104
synchronous machines
step change in input torque 147
three-phase fault 153, 171-175,
221

e
Eddy current
electromechanical energy conversion
13,14
permanent-magnet ac machine 328
symmetrical induction machine
83
Eigenvalues
induction machines 207-209,
211-213, 216-222, 232

linearized machine equations 208,
210-216

overview of 207

synchronous machines 207-210,

213-216, 220-222, 232
Electrical angles, defining 136
Electrical angular displacement of the

rotor 136

Electrical angular velocity 51, 75, 80,
97,117, 118, 138, 221, 328
Electric transients, neglecting 163-176,
207, 217, 219, 230
Electromagnetic forces (fe)
24-28
Electromagnetic torque
calculation of 1,26-27
dc machine with field winding 127,
130, 141, 201, 221, 310
free acceleration characteristics 89,
91, 169
induction motor drives
382, 388
linear magnetic system 20
in machine variables 112, 160, 221
motor action 85, 86, 112,115, 210
permanent-magnet ac machine 331,
334
permanent-magnet ac motor drives
426
rotational system 26, 112, 310
slip frequency 359
symmetrical induction machines 85,
86, 106
synchronous machines
160, 173, 221
three-phase fault 156, 172-174, 221
volts-per-hertz drive strategy 352,
353, 356, 357, 363
Electromechanical energy conversion
ac machines, elementary 13, 14, 27
electromagnetic forces (fe) 14,19,
24,27
energy balance 13-17
energy in coupling fields 18-24
energy relationships 13-18
graphical interpretation of 425
linear magnetic system 20
magnetically coupled circuits 1,2
nonlinear magnetic system 8-12
problems 33-36
steady-state and dynamic performance
27-32

14,18, 19,

358, 365, 380,

127,130, 141,



Emf. see Counter emf
Energy balance 14,75
electromagnetic forces 14
Energy conversion
electromagnetic forces 24-27
graphical interpretation of 425
Energy loss
hysteresis (core) losses 13
ohmic losses 83
Energy balance relationships 13-18
electromechanical systems 13
Equal-area criterion 158
Equations. see also Torque- specific types
of equations; Voltage equation
alternative forms
eigenvalues, induction machines
207-230
eigenvalues, overview 207, 208,
210, 214, 216, 217, 220, 230, 232
eigenvalues, synchronous machines
127,128,177, 178, 207, 208, 220
linearized machine equation 208,
210-216
performance prediction, induction
machine 104, 207
performance prediction,
synchronous machine
130, 171, 207
voltage behind reactance model
225,227, 230
dc machines and drives 111, 114,
119, 126, 309, 318, 321
flux linkage (see Flux linkage)
operational impedance
derived synchronous machine
frequency-response parameters
178
Park’s equations
178, 215
short-circuit characterization 188
standard synchronous machine
182-185
synchronous machine, four-winding
rotor 182

127,

127,137, 170,

Index

synchronous machine, standard
reactance 34, 74,75, 80,
82-84, 88, 89, 132, 137, 140,
184, 202, 205, 207-209, 230
operational impedances 177-202,
228
permanent-magnet ac machine
109-111, 126, 140, 265, 322,
333, 401, 409
time constants, steady-state equation
143, 321, 333, 385
transformation, change of variables
5,6, 58,72,127,130
transformation, rotor circuits 82,
163, 164, 166, 169, 177, 188,
200, 218, 222, 367
Excitation voltage 140
Exercises. see Problems
Exponential decay 59
Extended sine-triangle modulation
283-285, 289, 293, 295, 397, 399

f

Faraday’s law 70, 381
Fault, three phase. see Three-phase fault
Feedforward current control 385, 386
Feedforward voltage control 385, 386
Field energy 19-26
Field-oriented control, induction motor
drives 351, 365-379
Field voltage 141, 142,177,178, 182,
183, 188, 201, 215
Field weakening 123
Field winding
dc machines
machine variables
Park’s equations 127, 178, 205
synchronous machines 127-130,
141, 142,177, 178, 205, 221, 222
voltage equation for 111, 141, 178,
309
Firing delay 234-236, 238-242, 246,
250, 252, 253, 255
Fixed-slip frequency 358

111, 305, 306, 309, 310
111, 221, 222

447



Index

Flux

air-gap 353, 354, 357, 358, 365, 369,
372, 375, 376, 379, 387

components of 2, 34, 40, 165, 208,
271, 359, 360, 370, 380, 381, 388

electromagnetic systems 22

as independent variables 20, 22, 25,
208

inductive circuit elements 165

leakage vs. magnetizing 2-5, 18, 34,
48,112, 223, 354, 371

linear magnetic system 20

linkage (see Flux linkage)

magnetizing flux (see Magnetizing
flux)

permanent-magnet ac machines
112

stator (see Stator flux)

symmetrical induction machines 67,
74,77, 80

synchronous machines 132,133, 136,
137,170, 177, 178, 208, 216,

111,

223, 227, 304
Flux control loop 372
Flux linkage

ac machines 10
computer simulation 10

constant-slip current control 359,
360

dc machines 112,126

direct field-oriented control 369, 372,

376

field flux linkage 310

as independent variable 20, 22, 25,
208

indirect field-oriented control 376

indirect rotor field-oriented control
376

linear magnetic system 20

machine equations, alternative forms
165,177,178, 182, 208, 224,
228,232

Park’s equations 137,170, 178

permanent-magnet ac machines 111,
112

symmetrical induction machines 67,
74

synchronous machines 136, 137, 170,
177, 178, 208, 216, 227, 304

three-phase bridge converters 304

volts-per-hertz control 351-358
Formulas. see Equations
Fourier series
mmf 40
sine-triangle modulation 282
six-step operation 267, 269, 274, 276
six-stepped three-phase bridge
operation 265
Four-pole stator 51, 52
Four-winding rotor synchronous
machine
operational impedance 182
time constants, derived 185-188
time constants, standard 184-185
Free acceleration
brushless dc motor 118
symmetrical induction machines,
reference frames 97-101
Frequency
balanced steady-state phasor
conditions 53, 54, 182
fixed slip frequency 358
induction motor drives 300, 351, 352,
354, 360, 362, 370, 374
machine equations 165, 192, 194,
196, 198, 207, 212, 214, 220, 228
alternative forms 207
operational impedances 177,179,
183,189, 192, 194, 196, 198,
228,229
permanent-magnet ac machine 109,
110, 117, 136, 259, 299, 303, 392
permanent-magnet ac motor drives
391, 394, 396, 398, 413-416
symmetrical induction machines 68,
80, 84, 86-88



synchronous machines 109, 110, 136,
137,179, 183,197, 207, 213,
214, 220, 221
three-phase bridge converters 274,
276, 278, 280, 282, 288, 290,
292, 298, 300
Frequency-response parameters,
operational impedance
196-202
Full-bridge converters
239-248, 255
Fully controlled three-phase bridge
converters. see Three-phase
bridge converters

233-236,

9

Generator action
positive stator currents, synchronous
machine 130, 143, 144
slip, at maximum torque 86
synchronous machines 85, 143, 144
Generators
dynamic performance of, torque
changes 147,150, 152-154,
156, 172, 174
hydro turbine generator
dynamic performance, torque
changes 147,150, 153, 154,
172
equal-area criterion 158
three-phase fault at terminals
153-155,157,171, 172, 221
transient torque, actual vs.
approximate 184
transient torque, three-phase fault

146,

172
positive stator currents, synchronous
machine 130, 143, 144

steam turbine generator
dynamic performance, torque
changes 147,150, 152-154,
156,174
equal-area criterion 158

Index

three-phase fault at terminals
153-156, 171, 174, 221
transient torque, actual vs.
approximate 152
transient torque, three-phase fault
158
wind turbine generator

128,

127

h

Hall effect rotor position sensors
Harmonics
magnetomotive force (see
Magnetomotive force (mmf))
permanent-magnet ac motor drives
109, 267, 394
sine-triangle modulation 278,
280-282, 298, 397, 402
three-phase bridge converters 109,
267, 269, 272, 276, 280, 282,
298, 300
waveforms (see Waveforms)
Hydro turbine generator
dynamic performance, torque changes
147,150, 153, 154, 172
equal-area criterion 158
three-phase fault at terminals 146,
153-155, 157,171, 172, 221
transient torque, actual vs.
approximate 184
transient torque, three-phase fault
172
Hysteresis
frequency-response parameters 196
(core) losses from 14, 18, 83, 328
Hysteresis modulation
abc variable current command 296,
417, 418
vs. delta modulation 292-293
permanent-magnet ac motor drives
418

391

i

Impedance
circuits, magnetically coupled 1-12
infinite bus (see Infinite bus)
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Impedance (contd.)
operational impedances (see
Operational impedances)
per unit system 137
of PVVBR models 228, 229
on startup 406
symmetrical induction machines 84,
85
thyristor, in reverse bias mode 233,
248
Indirect rotor field-oriented control
376-379
Inductance

ac machines 299, 339, 390

electromechanical systems 14, 17
flux linkage and 22, 75
induction machine 163, 223,299

leakage (see Leakage inductance)

magnetizing inductance 35, 48, 196,
371

mutual inductance (see Mutual
inductance)

self-inductance 309
Induction machine

dynamic performance, torque changes
102-104, 382

eigenvalues 207, 216-222

free acceleration characteristics, in
reference frames 95,97-101,
166

linearized machine equations 208

overview of 65

parameters 82, 86, 89, 97, 208, 368,
377

performance prediction 104, 207

per unit system 80, 137

problems 105-107

simulation, arbitrary reference frame
67-70

steady-state operation 82, 85, 107

torque equation, arbitrary reference
frame variables 75-76

torque equation, machine variables
168, 169

transformation equations 110

voltage equations, arbitrary reference
frame variables 132

voltage equations, machine variables
110

windings 66-70

Induction motor drives

constant slip current control 358-365

direct field-oriented control 369-371

direct torque control 379-383

field-oriented control 365-369

indirect rotor field-oriented control

376-379
overview of 351
problems 387-388
robust direct field-oriented control
371-375
slip energy recovery drives 383-386
volts-per-hertz control 351-358
Inertia constant (H), 80, 106, 138
Infinite bus 148, 154, 171, 214, 215,

220, 221
Instantaneous phasor notation 81,116
Insulated-gate bipolar junction transistor
(IGBTs) 259
Intervals, three-phase load commutated
converters 245-256
Inverters. see also Converters; Permanent
magnet ac motor drives
induction motor drives 351
permanent-magnet ac machine 109,
117
Permanent-magnet ac motor drives
case study 428-431
current-regulated 417-421
transient and dynamic behavior
406-411
voltage-sourced 389-391
voltage-source inverter 390-391
semi-controlled bridge converters
233-257
three-phase bridge converters
259-300
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Kirchoff’s law 401

l
Laplace notation 179, 412
Law of conservation of energy 14
Leakage flux 2,112,113, 372
Leakage inductance
current-regulated inverter drives 417
defined 24
induction motor drives 372
machine equations 196, 202
of stator winding 48, 112, 201
symmetrical induction machines 90
synchronous machines 202
Linearized machine equations 208, 210
Linearized model 390, 409, 410, 412,
413
Linear magnetic system
flux linkage equations 5, 20
magnetically coupled circuits 5
power balance approach 75, 76
synchronous machines 207
Line-commutated converter. see
Semicontrolled bridge
converters
Line-to-line voltage, six-step operation
266
Line-to-neutral voltage, six-step
operation 268, 302
Load torque 86,97, 102-104, 119, 161,
215, 219, 220, 310-312, 316,
319, 320, 334, 336, 353, 387,
388, 406
Lorentz force equation 366
Lumped circuit approximation 199, 200

m
Machine control
brushless dc motor 118,119, 389,
392, 400, 406, 420, 424, 426
dc motor drives 389, 390
induction motor drives 305. 351, 352,
358, 364, 372, 379, 382

Index

permanent-magnet ac motor drives
109-111, 117, 140, 259, 265,
305, 322, 339, 389, xvii, xviii
reluctance motor drives 127
Machine equations
alternative forms
eigenvalues, induction machines
207-230
eigenvalues, overview 207
eigenvalues, synchronous machines
127,128,177, 178, 207, 208, 220

linearized machine equations 208,
210

performance prediction, induction
machine 104, 207

performance prediction,
synchronous machine 127,

130, 171, 207

problems 204-205

voltage behind reactance model
230

in operational impedances and time

constraints 177-202

derived time constants 188, 196,
204

frequency-response parameters
196-202

overview of 177
Park’s equations, operational form
178
problems 204-205
short-circuit characterization
188-196
standard time constants 184-185
synchronous machine, four-winding
rotor 182
synchronous machine, standard
reactance 182-184
Machine terminal fault 153-158,
171-175
Magnetically coupled circuits
linear magnetic system 5
magnetization curve 11
nonlinear magnetic system 8-12
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Magnetizing flux
induction motor drives
vs. leakage flux 2,112
linear magnetic system 5
machine equations, alternative forms

165,177, 182, 208, 224, 228

354

in winding flux linkage terms 4, 112,
354
Magnetizing inductance 4, 5, 34, 35, 48,
158, 196, 371

Magnetomotive force (mmf)
air-gap mmf (see Air-gap
magnetomotive force (mmf))
dc machines 306
linear magnetic system 5
rotating mmf 68
Metal-oxide-semiconductor field-effect
transistors (MOSFETs) 259
Modulation index command, magnitude
of 286-289
Modulation indices, vs. state 286
MOS controlled thyristors (MCTs) 259
Motor action
electromagnetic torque 85, 86, 115,

210
permanent-magnet ac machine
327
synchronous machines, torque
equation
machine variables 112

torque equation 115, 309
Motors. see Drive motors; Induction
motor drives
Moving average. see Dynamic averaging
process
Multi-excited electromagnetic system
22
Mutual inductance
ac machines 47-48
dc machines 309
defined 4
permanent-magnet ac machines
symmetrical induction machines
48

112

n

Newton’s law 15
Nickle, C.A. 184
No-load test 82, 83

Nonlinear magnetic system 8-12

0
Ohm’slaw 3
Open-circuit test 8, 83
Open-circuit time constants 184-187
Open-circuit voltage 112, 306
Open-loop permanent-magnet ac motor
drive 414
Open-loop voltage and current
regulation 293-296
Operational impedances
derived time constants 188, 196, 204
frequency-response parameters
196-202
overview of 178
Park’s equations, operational form
178
problems 204-205
short-circuit characterization
188-196
standard time constants 184-185
synchronous machine, four-winding
rotor 182
synchronous machine, standard
reactance 182-184
Overmodulation 281, 285, 398

p
Park, R.H., xvii
178
Park’s equations
linearized machine equations 215
in operational form 178
per unit equations 137
on rotor, as distributed parameter
system 177
synchronous machines 127
voltage equations, reactance model
170, 178

41, 43, 45,130, 177,



Permanent-magnet ac machine (PMAM)
ac machines (see Alternating current
(ac) machines)
as brushless dc motor 389, 390, 392,
394, 396, 398, 410, 412, 414,
416, 418
overview of 109
phase-shifting of applied voltages
109, 117, 140, 272, 414, 434
problems 348-349
rotor reference frame variables,
voltage and torque 113-116
stator current control 121, 128, 130,
260, 322, 323, 325, 326, 345,
348, 404
steady-state operation 110, 117, 121,
126, 140, 208, 322, 323, 331,
340, 390, 394, 396, 398, 404,
405, 411, 418
variables, voltage and torque
equations 113-116
Permanent-magnet ac motor drives
block diagram 331, 333, 334, 389, 412
current-regulated inverter drives
418, 419, 421
average-value analysis 426-428
current command synthesis
423-426
features 417
speed control study 428-431
voltage limitations 421-423
overview of 389, 390
partsof 389
problems 348-349
voltage-source inverter drives 390
average-value analysis 400-403
features 417
ideal source equivalence 391
speed control study 411-416
steady-state operation 117
transient and dynamic performance
406-411
Permanent-magnet dc machine
311-313

Index

block diagrams, time-domain 116
Per unit system
symmetrical induction machines
78-81
synchronous machines 137-138
Phase-leg duty cycles 395, 396
Phase-locked loop (PLL) 385
Phase-shifting of applied voltages 121
permanent-magnet ac machine 121
Phasor conditions, steady-state
arbitrary reference frame 54
single-phase induction machines 82,
234
symmetrical induction machines
81-89
synchronous machines 138-143
Physical-variable coupled-circuit (PVCC)
model 222
Physical-variable
voltage-behind-reactance
(PVVBR) model 208
Poles. see also Air-gap magnetomotive
force (mmf)
brushless dc machines
123,420
induction machines 66, 128
induction motor drives 66, 300, 352
permanent-magnet ac motor drives
117
P-pole machines 51, 52, 66
symmetrical three-phase stator 46
synchronous machines 146, 185
two-pole vs. four-pole 51, 66
Positive stator currents, definition 178
motors 130
synchronous generator 128, 143
Power balance approach 75, 76
Power factor 83, 107, 146, 148, 154,171,
432
P-pole machines 51-52, 66, 76, 80, 115
Prime mover, torque from 136, 138,
215, 216
Problems
dc machines

117,118,121,

126
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Problems (contd.)
electromechanical energy conversion
33-36
induction motor drives 387-388
machine equations, alternative forms
204-205
operational impedance 204-205
permanent-magnet ac machine
348-349
permanent-magnet ac motor drives
431-432
reference frame theory 63-64,
105-107
semi-controlled bridge converters
258
symmetrical induction machines
105-107
synchronous machines 158-161
three-phase bridge converters
302-304
Proportional Plus integral (PI) controller
412
Pulse-width modulation (PWM) control
modulation indices vs. state 286
qd framework 247, 249
six-step operation 265-273
space-vector modulation 285-289

r
Rectifiers
induction motor drives 383, 386
permanent-magnet ac motor drives
390, 391, 404
PVCC form 222,223
PVVBR form 223
semi-controlled bridge converters
234.238
Reduced-order model 171, 173, 208,
230, 292, 331, 346
Reference frames and theory
arbitrary reference frame 44, 49, 53,
58, 59
balanced steady-state phasor
conditions 53

balance steady-state voltage equations
46-49
field-oriented control, induction motor
drives 97
free acceleration 97-101
instantaneous phasor notation 56, 57
overview of 44, 46
problems 63-64, 105-107
rotor reference frame variables 97
six-stepped three-phase bridge
operation 265
stator voltage equations 397
symmetrical induction machines
97-101
synchronous reference frame (see
Synchronous reference frame)
transformation
balanced set 52-56
change of variables 58
between reference frames 49-51
variables from several frames of
reference 57-62
Reference frame theory 37, 44, 208,
222,269
Reluctance machines 128, 130, 141,
159, 321-347
Resistance, ac machines 110, 140, 304
Resistance matrix 226
Robust direct field-oriented control,
induction motor drives
371-375
Rotating mmf 45, 51, 68
Rotational device, torque of 26, 66, 112,

310
Rotor
angle of, vs. transient torque 94, 169,
172,184

dc machine, elementary two-pole 68
dynamic performance and torque
changes 104, 219, 336
eigenvalues 151, 208, 210, 214,
217-222, 224, 228, 230
electrical angular displacement of
97, 118, 136, 221



electrical angular velocity of 80, 117,
138, 328
equal-area criterion 158
mechanical speed of 327
reference frame variables 44, 97, 113,
115, 130, 155, 164, 214
speed of (see Rotor speed)
synchronous machines 136-137
transformation equations 110
Rotor circuits
eigenvalues 218, 221, 222
equations of transformation for 73,
106
free acceleration characteristics 95,
166
input impedance of 179, 200
short-circuited 367
symmetrical induction machines 68
Rotor-dependent resistances 228
Rotor flux calculator 370, 371, 376
Rotor flux observer 371
Rotor position
brushless dc machine 110, 389, 392,
396, 402
dc machine 110, 307
machine equations, alternative forms
208, 222, 228
permanent-magnet ac machines and
drives 110, 267, 389, 391, 392,
396
synchronous machines 208, 222
Rotor reference frame
free acceleration characteristics 97
physical-variable
voltage-behind-reactance 208
reference frame theory 37, 44, 208,
222
simulation in 77-78
synchronous machines 130-132
Rotor speed
brushless dc motor 109, 110, 112,
117-119, 121, 123, 124, 424
dc machines and drives 109, 118,
119, 309, 310
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dynamic vs. stead-state torque 94,
207, 215, 323

eigenvalues 210, 218-221

induction motor drives 66, 94, 352,
354, 358, 360, 382

Park’s equations 137, 215

permanent-magnet ac machine 109,
110, 117, 140, 323, 325, 327,
329, 331

permanent-magnet ac motor drives
391, 401, 413, 415, 432

slipand 66, 82, 97, 360, 386

symmetrical induction machines 66,
78, 82,94

synchronous machines 109, 173, 207,
215, 221, 304

three-phase fault 173, 218, 221

torque and 78, 80, 94, 112, 133, 134,
137, 140, 143, 210, 310, 327
341, 381, 382

Saturation

linear magnetic system 20
nonlinear magnetic system 8-12
simulation of 9, 10, 12, 127

Sector, conditioned modulation

command 287

Self-inductance

ac machines 299

arbitrary reference frame 163

dc machines and drives 309

linear magnetic system 20
symmetrical induction machines 71

Semiconductor devices 260, 263, 274
Semi-controlled bridge converters

extensions 256-257
problems 258
single-phase load commutated
converter 233-244
basic operation of 233-234
modes of operation 241-244
operation with commutating
inductance 236-238

455



456 | Index
Semi-controlled bridge converters
(contd.)
operation with commutating
inductance and firing delay
238-241
operation with firing delay 238
three-phase load commutated
converter 245-256
analysis and average-value model
247-256
modes of operation 245-247
Semi-converters 233
“Shoot-through” 263, 303
Short-circuit 7, 34, 65, 85, 128, 138, 153,
177, 188-196, 236, 237, 306,
314, 316, 367. see also Faults
dynamic performance during
153-158
Short-circuit stator current
204, 205
Short-circuit test 8, 84,177, 188, 196
Short-circuit time constants 184, 185,
187, 188, 190, 204
Simulation. see Computer simulation
Sine-triangle modulation (STM)
induction motor drives 385, 386
permanent-magnet ac motor drives
current-regulated inverters 418,
419, 421

193-195,

three-phase bridge converters 259,
260, 265, 267, 299

voltage regulation 295, 298

voltage-source inverters 390-391,

409, 411-416
Single-phase load commutated converter
basic operation of 233-234
modes of operation 241-244
operation with commutating
inductance 236-238
operation with commutating
inductance and firing delay
238-241
operation with firing delay 238
Single-phase rectifiers 400

Singly excited electric systems 19, 20
Six-step modulated permanent-magnet
ac motor drive 396
Six-stepped three-phase bridge operation
average-value analysis 271
closed-loop voltage and current
regulation 296-300
delta modulation 292-293
example, find average dc current
frequency spectrum 269
hysteresis modulation 289-292
line-to-line voltages 264, 266
line-to-neutral voltages 264, 265,
267-271
modulation control signals 275
open-loop voltage and current
regulation 293-296
overmodulation 281
permanent-magnet ac motor drives
(see Permanent-magnet ac
motor drives)
problems 302-304
pulse-width modulation control 273
sine-triangle modulation 278-285
voltage and current waveforms 270,
272,277
Slew rate limiter (SRL) 352, 387
Sliding average. see Dynamic averaging
process

272

Slip

constant slip current control

defined 209

at maximum torque 86, 87

slip energy recovery drives

steady-state torque 85-87
Slip energy recovery drives 383-386
Slip frequency 97, 359-363, 387
Small-displacement stability

induction machines 216-220

overview of 216

synchronous machines 220-221
Solid-state converters for dc drives 88
Space-vector modulation (SVM)

285-289, 292, 293, 295, 398, 399

358-365

383-386



Speed control. see also Rotor speed
induction motor drives 351, 364, 365,
374,378
permanent-magnet ac motor drives
413-416
Speed voltage 76, 166, 333
Squirrel-cage rotor 65, 67
Start-up response 317, 407, 416, 430
State sequence, determination of
287-289
Stationary coupled coils 1-12
Stationary reference frame
direct field-oriented control 369-371
free acceleration characteristics
97-101
overview of 59, 60
reference frame theory 44, 208, 222,
269
three-phase bridge converters 285,
286
Stator circuits
induction machine 72, 85, 104
machine equations, alternative forms
207
subscript for 72
time constants, standard 184-185
Stator currents
permanent-magnet ac machine 322,
323
synchronous generator operation
143-158
positive  143-158
Stator flux 177,178, 182, 183, 224, 352,
355, 365, 373, 379-382
Stators. see also Voltages and currents,
converter
ac machines 38, 322, 323
eigenvalues 207, 217-219, 221
flux (see Stator flux)
leakage inductance 48, 417
mmf expression 37-41
positive stator currents, synchronous
machine (see Synchronous
machines)

Index

voltage equations 46-49, 72, 166,
169-171, 217, 225, 226, 230,
333,384, 385, 419, 421
Stator time constant 184-185
Stator voltage equations 46-49, 72, 166,
169-171, 217, 225, 226, 230,
333, 384, 385, 419, 421
Stator windings 37-42, 44, 48, 67, 68,
71, 83, 106, 109, 110, 112, 115,
128, 136, 141, 183, 196, 201,
217, 227, 232, 306, 345, 382, 384
Steady-state conditions
armature voltage 311
balanced steady-state phasor relations
56-57
brushless dc motor 118-121
constant slip control drive 362
dc machines 119,122, 311
vs. dynamic performance and torque
changes 104
permanent-magnet ac machine 322,
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390, 394, 396, 398, 404, 405, 418
current-regulated inverters
417-421
voltage-source inverters 403-406
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slip energy recovery drives 383-386
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85-88
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voltage equations 81-82
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three-phase fault at terminals

153-158,171, 174
transient torque, actual vs.
approximate 158
transient torque, three-phase fault
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276, 278, 292, 298, 300
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overview of 127-128
permanent-magnet ac machine 136
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dynamic performance, three-phase
fault 153-158
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changes 147-153
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equal-area criterion 158
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simulation 127
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steady-state operation 138-143, 182,
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torque equations
machine variables 160
rotor reference frame variables
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113-116
voltage equations
machine variables 109-112
rotor reference frame variables
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free acceleration characteristics
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overview of 163

three-phase bridge converters 294,
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variables of 121,272,297
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Taylor’s expansion 210
Thomas, C.H. 63,105
3/2 factor 159,232
Three-phase bridge converters
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regulation 296-300
converter voltages and currents 264
delta modulation 292-293
hysteresis modulation 289-292
modulation indices vs. state 286
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regulation 293-296
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problems 302-304
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six-step operation
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272
frequency spectrum 269
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267-271
modulation control signals 275
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273
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232,379
Three-phase load commutated converter
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Three-phase stator winding 106
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Time constants
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313
equations 309-311
direct field-oriented control 373, 374
dynamic performance
three-phase fault 156, 165, 172
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electromagnetic systems (see
Electromagnetic torque)
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drives 365-369
induction motor drives, direct control
379-383
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Lorenze force equation 366
permanent-magnet ac machine
322-339
permanent-magnet ac motor drives
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overview of 41-46
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Transient performance 298, 367, 378,
414
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stator voltage equations 170, 171
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machine variables
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simulation 127
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